Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 13012
Number of page(s) 8
Section Growth of Short and Long Cracks - Crack Growth Thresholds
DOI https://doi.org/10.1051/matecconf/201816513012
Published online 25 May 2018
  1. A. Pineau and S. D. Antolovich, “High temperature fatigue of nickel-base superalloys - A review with special emphasis on deformation modes and oxidation,” Eng. Fail. Anal., vol. 16, no. 8, pp. 2668–2697, (2009). [CrossRef] [Google Scholar]
  2. D. Leidermark, J. J. Moverare, K. Simonsson, S. Sjöström, and S. Johansson, “Room temperature yield behaviour of a single-crystal nickel-base superalloy with tension/compression asymmetry,” Comput. Mater. Sci., vol. 47, no. 2, pp. 366–372, (2009). [CrossRef] [Google Scholar]
  3. D. P. Pope and S. S. Ezz, “Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of gamma prime,” Int. Met. Rev., vol. 29, no. 3, pp. 136–167, (1984). [Google Scholar]
  4. M. Segersäll, J. J. Moverare, D. Leidermark, and K. Simonsson, Low-cycle fatigue behaviour of a Ni-based single-crystal superalloy, vol. 891–892. (2014). [Google Scholar]
  5. D. Leidermark and M. Segersäll, “Modelling of thermomechanical fatigue stress relaxation in a single-crystal nickel-base superalloy,” Comput. Mater. Sci., vol. 90, pp. 61–70, (2014). [CrossRef] [Google Scholar]
  6. R. L. Amaro, S. D. Antolovich, R. W. Neu, and A. Staroselsky, “Physics-Based Modeling of Thermo-Mechanical Fatigue in PWA 1484,” in Superalloys 2012, (2012), pp. 481–490. [CrossRef] [Google Scholar]
  7. B. F. Antolovich, A. Saxena, and S. D. Antolovich, “Fatigue crack propagation in single-crystal CMSX-2 at elevated temperature,” J. Mater. Eng. Perform., vol. 2, no. 4, pp. 489–495, (1993). [CrossRef] [Google Scholar]
  8. J. Telesman and L. J. Ghosn, “The unusual nearthreshold FCG behavior of a single crystal superalloy and the resolved shear stress as the crack driving force,” Eng. Fract. Mech., vol. 34, no. 5–6, pp. 1183–1196, (1989). [CrossRef] [Google Scholar]
  9. J. Telesman and L. J. Ghosn, “Fatigue crack growth behavior of PWA 1484 single crystal superalloy at elevated temperatures,” J. Eng. Gas Turbines Power, vol. 118, no. 2, pp. 399–405, (1996). [CrossRef] [Google Scholar]
  10. D. Leidermark, J. Moverare, K. Simonsson, and S. Sjöström, “A combined critical plane and critical distance approach for predicting fatigue crack initiation in notched single-crystal superalloy components,” Int. J. Fatigue, vol. 33, no. 10, pp. 1351–1359, (2011). [CrossRef] [Google Scholar]
  11. C. Busse et al., “A finite element study of the effect of crystal orientation and misalignment on the crack driving force in a single-crystal superalloy,” in Proceedings of the ASME Turbo Expo, (2016), vol. 7A–2016. [Google Scholar]
  12. R. C. Reed, J. Moverare, A. Sato, F. Karlsson, and M. Hasselqvist, “A New Single Crystal Superalloy for Power Generation Applications,” Superalloys 2012, pp. 197–204, (2012). [CrossRef] [Google Scholar]
  13. A. Coles, R. E. Johnson, and H. G. Popp, “Utility of surface-flawed tensile bars in cyclic life studies,” J. Eng. Mater. Technol. Trans. ASME, vol. 98, no. 4, pp. 305–315, (1976). [CrossRef] [Google Scholar]
  14. C. Busse et al., “Prediction of crystallographic cracking planes in single-crystal nickel-base superalloys,” Manuscr. Submitt. Publ., (2018). [Google Scholar]
  15. ASTM, “Test Method for Measurement of Fatigue Crack Growth Rates,” (2012). [Google Scholar]
  16. K. Schwalbe and D. Hellmann, “Application of the Electrical Potential Method to Crack Length Measurements using Johnson’s Formula,” J. Test. Eval., vol. 9, no. 3, pp. 218–221, (1981). [CrossRef] [Google Scholar]
  17. P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, vol. 85, no. 4. p. 528, 1963. [CrossRef] [Google Scholar]
  18. D. R. Askeland and P. P. Phule, The Science and Engineering of Materials, Fifth Edit. Toronto: Thomson, Canada, (2006). [Google Scholar]
  19. A. Hoenig, “Near-tip behavior of a crack in a plane anisotropic elastic body,” Eng. Fract. Mech., vol. 16, no. 3, pp. 393–403, (1982). [CrossRef] [Google Scholar]
  20. L. Banks-Sills, P. A. Wawrzynek, B. Carter, A. R. Ingraffea, and I. Hershkovitz, “Methods for calculating stress intensity factors in anisotropic materials: Part II-Arbitrary geometry,” Eng. Fract. Mech., vol. 74, no. 8, pp. 1293–1307, (2007). [CrossRef] [Google Scholar]
  21. FRANC3D, FRANC3D Reference Manual. Ithaca, USA: Fracture Analysis Consultants Inc., (2016). [Google Scholar]
  22. ABAQUS, ABAQUS 6.12 Documentation. Providence, USA: Dassault Systèmes, (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.