Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 08002
Number of page(s) 6
Section Fatigue of Polymers and Elastomers
DOI https://doi.org/10.1051/matecconf/201816508002
Published online 25 May 2018
  1. Goerg H. Michler. Electron Microscopy of Polymers. (Springer Berlin Heidelberg, 2008). doi:10.1007/978-3-540-36352-1 [Google Scholar]
  2. Brydson, J. Plastics Materials (7th Edition) - 10 Polyethylene - Knovel. (1999). [Google Scholar]
  3. Calmon-Decriaud, A., Bellon-Maurel, V. & Silvestre, F. Standard Methods for Testing the Aerobic Biodegradation of Polymeric Materials. Review and Perspectives. in Blockcopolymers - Polyelectrolytes - Biodegradation 207–226 (Springer Berlin Heidelberg, 1998). (eds. Bellon-Maurel, V. et al.) doi:10.1007/3-540-69191-X_3 [CrossRef] [Google Scholar]
  4. Babaghayou, M. I. et al.Photodegradation characterization and heterogeneity evaluation of the exposed and unexposed faces of stabilized and unstabilized LDPE films. Mater. Des. 111, 279–290 (2016). [CrossRef] [Google Scholar]
  5. Michelot, H. et al. Effect of drug precursors and chemicals relevant to clandestine laboratory investigation on plastic bags used for collection and storage. Forensic Sci. Int. 273, 106–112 (2017). [CrossRef] [Google Scholar]
  6. El-Mazry, C., Ben Hassine, M., Correc, O. & Colin, X. Thermal oxidation kinetics of additive free polyamide 6-6. Polym. Degrad. Stab. 98, 22–36 (2013). [CrossRef] [Google Scholar]
  7. White, J. R. &Teh, J. W. Fatigue of viscoelastic polymers: Fractography. Polymer 20, 764–771 (1979). [CrossRef] [Google Scholar]
  8. Kumar Sen, S. & Raut, S. Microbial degradation of low density polyethylene (LDPE): A review. J. Environ. Chem. Eng. 3, 462–473 (2015). [CrossRef] [Google Scholar]
  9. Kyrikou, I. &Briassoulis, D. Biodegradation of Agricultural Plastic Films: A Critical Review. J. Polym. Environ. 15, 125–150 (2007). [CrossRef] [Google Scholar]
  10. Feldman, D. Polymer Weathering: Photo-Oxidation. J. Polym. Environ. 10, 163–173 (2002). [CrossRef] [Google Scholar]
  11. Rabek, J. F. Physical aspects of the photodegradation of polymers. in Polymer Photodegradation 1–23 (Springer, Dordrecht, 1995). doi:10.1007/978-94-011-1274-1_1 [Google Scholar]
  12. White, J. R. &Shyichuk, A. V. Macromolecular scission and crosslinking rate changes during polyolefin photo-oxidation. Polym. Degrad. Stab. 92, 1161–1168 (2007). [CrossRef] [Google Scholar]
  13. Hsu, Y.-C. et al. A fundamental study on photooxidative degradation of linear low density polyethylene films at embrittlement. Polymer 53, 2385–2393 (2012). [CrossRef] [Google Scholar]
  14. Roy, P. K., Surekha, P., Raman, R. & Rajagopal, C. Investigating the role of metal oxidation state on the degradation behaviour of LDPE. Polym. Degrad. Stab. 94, 1033–1039 (2009). [CrossRef] [Google Scholar]
  15. Koutny, M., Lemaire, J. &Delort, A.-M. Biodegradation of polyethylene films with prooxidant additives. Chemosphere 64, 1243–1252 (2006). [CrossRef] [Google Scholar]
  16. Tidjani, A. Comparison of formation of oxidation products during photo-oxidation of linear low density polyethylene under different natural and accelerated weathering conditions. Polym. Degrad. Stab. 68, 465–469 (2000). [CrossRef] [Google Scholar]
  17. Şener, S. et al. World Conference on Technology, Innovation and EntrepreneurshipImpact of Solar Radiation Effects on the Physicochemical Properties of Polyethylene (PE) Plastic Film. Procedia - Soc. Behav. Sci. 195, 2210–2217 (2015). [CrossRef] [Google Scholar]
  18. Cunliffe, A. V. & Davis, A. Photo-oxidation of thick polymer samples–Part II: The influence of oxygen diffusion on the natural and artificial weathering of polyolefins. Polym. Degrad. Stab. 4, 17–37 (1982). [CrossRef] [Google Scholar]
  19. Yakimets, I., Lai, D. &Guigon, M. Effect of photooxidation cracks on behaviour of thick polypropylene samples. Polym. Degrad. Stab. 86, 59–67 (2004). [CrossRef] [Google Scholar]
  20. Valadez-Gonzalez, A., Cervantes-Uc, J. M. &Veleva, L. Mineral filler influence on the photooxidation of high density polyethylene: I. Accelerated UV chamber exposure test. Polym. Degrad. Stab. 63, 253–260 (1999). [CrossRef] [Google Scholar]
  21. Kelly, C. T. & White, J. R. Photo-degradation of polyethylene and polypropylene at slow strain-rate. Polym. Degrad. Stab. 56, 367–383 (1997). [CrossRef] [Google Scholar]
  22. Carrasco, F., Pagès, P., Pascual, S. & Colom, X. Artificial aging of high-density polyethylene by ultraviolet irradiation. Eur. Polym. J. 37, 1457–1464 (2001). [CrossRef] [Google Scholar]
  23. Tavares, A. C., Gulmine, J. V., Lepienski, C. M. &Akcelrud, L. The effect of accelerated aging on the surface mechanical properties of polyethylene. Polym. Degrad. Stab. 81, 367–373 (2003). [CrossRef] [Google Scholar]
  24. Gulmine, J. V., Janissek, P. R., Heise, H. M. &Akcelrud, L. Degradation profile of polyethylene after artificial accelerated weathering. Polym. Degrad. Stab. 79, 385–397 (2003). [CrossRef] [Google Scholar]
  25. Guedes, R. M. Creep and Fatigue in Polymer Matrix Composites. (Elsevier, 2010). [Google Scholar]
  26. Gillen, K. T. & Clough, R. L. Time-temperaturedose rate superposition: A methodology for extrapolating accelerated radiation aging data to low dose rate conditions. Polym. Degrad. Stab. 24, 137–168 (1989). [CrossRef] [Google Scholar]
  27. Burnay, S. G. &Hitchon, J. W. Prediction of service lifetimes of elastomeric seals during radiation ageing. J. Nucl. Mater. 131, 197–207 (1985). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.