Open Access
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 07008
Number of page(s) 6
Section Fatigue of Composites
Published online 25 May 2018
  1. Huang, Y., S. Li, S. Lin, and C. Shih, Using the method of infrared sensing for monitoring fatigue process of metals. Mater. Eval. (United States), 42(8) (1984) [Google Scholar]
  2. Jiang, L., H. Wang, P. Liaw, C. Brooks, and D. Klarstrom, Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: experiment and theoretical modeling. Metallurgical and Materials Transactions A, 32(9): 2279-2296 (2001) [CrossRef] [Google Scholar]
  3. Jiang, L., H. Wang, P. Liaw, C. Brooks, L. Chen, and D. Klarstrom, Temperature evolution and life prediction in fatigue of superalloys. Metallurgical and Materials Transactions A, 35(3): 839-848 (2004) [CrossRef] [Google Scholar]
  4. Yang, B., P. Liaw, G. Wang, M. Morrison, C. Liu, R. Buchanan, and Y. Yokoyama, In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments. Intermetallics, 12(10): 1265-1274 (2004) [CrossRef] [Google Scholar]
  5. Curà, F., G. Curti, and R. Sesana, A new iteration method for the thermographic determination of fatigue limit in steels. International Journal of Fatigue, 27(4): 453-459 (2005) [CrossRef] [Google Scholar]
  6. Amiri, M. and M.M. Khonsari, Life prediction of metals undergoing fatigue load based on temperature evolution. Materials Science & Engineering A, 527(6): 1555–1559 (2010) [CrossRef] [Google Scholar]
  7. Amiri, M. and M.M. Khonsari, Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load. International Journal of Fatigue, 32(2): 382-389 (2010) [CrossRef] [Google Scholar]
  8. Vasiukov, D., S. Panier, and A. Hachemi, Direct method for life prediction of fibre reinforced polymer composites based on kinematic of damage potential. International Journal of Fatigue, 70: 289-296 (2015) [CrossRef] [Google Scholar]
  9. Peng, T., Y. Liu, A. Saxena, and K. Goebel, In-situ fatigue life prognosis for composite laminates based on stiffness degradation. Composite Structures, 132: 155-165 (2015) [CrossRef] [Google Scholar]
  10. Shiri, S., M. Yazdani, and M. Pourgol-Mohammad, A fatigue damage accumulation model based on stiffness degradation of composite materials. Materials & Design, 88: 1290-1295 (2015) [CrossRef] [Google Scholar]
  11. Luong, M.P., Fatigue limit evaluation of metals using an infrared thermographic technique. Mechanics of materials, 28(1): 155-163 (1998) [CrossRef] [Google Scholar]
  12. Boulanger, T., A. Chrysochoos, C. Mabru, and A. Galtier, Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. International Journal of Fatigue, 26(3): 221-229 (2004) [CrossRef] [Google Scholar]
  13. Chrysochoos, A., V. Dattoma, and B. Wattrisse, Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy. Theoretical & Applied Fracture Mechanics, 52(2): 117–121 (2009) [CrossRef] [Google Scholar]
  14. Guo, Q., X. Guo, J. Fan, R. Syed, and C. Wu, An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation. International Journal of Fatigue, 80: 136-144 (2015) [CrossRef] [Google Scholar]
  15. Huang, J., M.-L. Pastor, C. Garnier, and X. Gong, Rapid evaluation of fatigue limit on thermographic data analysis. International Journal of Fatigue, 104(Supplement C): 293-301 (2017) [CrossRef] [Google Scholar]
  16. Guo, Q. and X. Guo, Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation. Materials & Design, 90(Supplement C): 248-255 (2016) [CrossRef] [Google Scholar]
  17. La Rosa, G. and A. Risitano, Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International journal of fatigue, 22(1): 65-73 (2000) [CrossRef] [Google Scholar]
  18. Montesano, J., Z. Fawaz, and H. Bougherara, Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite. Composite structures, 97: 76-83 (2013) [CrossRef] [Google Scholar]
  19. Wang, X.G., V. Crupi, X.L. Guo, and Y.G. Zhao, Quantitative thermographic methodology for fatigue assessment and stress measurement. International Journal of Fatigue, 32(12): 1970-1976 (2010) [CrossRef] [Google Scholar]
  20. Fargione, G., A. Geraci, G. La Rosa, and A. Risitano, Rapid determination of the fatigue curve by the thermographic method. International Journal of Fatigue, 24(1): 11-19 (2002) [CrossRef] [Google Scholar]
  21. Luong, M.P., Infrared thermographic scanning of fatigue in metals. Nuclear Engineering and Design, 158(2): 363-376 (1995) [CrossRef] [Google Scholar]
  22. Tao, C., H. Ji, J. Qiu, C. Zhang, Z. Wang, and W. Yao, Characterization of fatigue damages in composite laminates using Lamb wave velocity and prediction of residual life. Composite Structures, 166: 219-228 (2017) [CrossRef] [Google Scholar]
  23. Lee, L.J., K.E. Fu, and J.N. Yang, Prediction of fatigue damage and life for composite laminates under service loading spectra. Composites Science and Technology, 56(6): 635-648 (1996) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.