Open Access
Issue |
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
|
|
---|---|---|
Article Number | 07005 | |
Number of page(s) | 6 | |
Section | Fatigue of Composites | |
DOI | https://doi.org/10.1051/matecconf/201816507005 | |
Published online | 25 May 2018 |
- A. Tenhave, "WISPER and WISPERX: Final definition of two standardised fatigue loading sequences for wind turbine blades," NASA STI/Recon Technical Report N, vol. 94, (1992) [Google Scholar]
- A. Ten Have, "WISPER: a standarized fatigue load sequence for HAWT-blades," Nationaal Lucht-en Ruimtevaartlaboratorium(1988) [Google Scholar]
- Wind Turbines - Part 2: Small wind turbines. IEC 61400-2:2013., (2013) [Google Scholar]
- E. Hau, Wind Turbines Fundamentals, Technologies, Application, Economics. (2013) [Google Scholar]
- A. Poursartip and P. W. R. Beaumont, "The fatigue damage mechanics of a carbon fibre composite laminate: II-life prediction," Compos. Sci. Technol., Article vol. 25, no. 4, pp. 283-299, (1986) [CrossRef] [Google Scholar]
- J. Degrieck and W. Van Paepegem, "Fatigue damage modeling of fibre-reinforced composite materials: Review," Appl. Mech. Rev., Review vol. 54, no. 4, pp. 279-299, (2001) [CrossRef] [Google Scholar]
- J. Degrieck and W. Van Paepegem, "Fatigue damage modeling of fibre-reinforced composite materials," Appl. Mech. Rev., vol. 54, no. 4, pp. 279-300, (2001) [CrossRef] [Google Scholar]
- G. Wu and J.-M. Yang, "The mechanical behavior of GLARE laminates for aircraft structures," JOM, vol. 57, no. 1, pp. 72-79, (2005) [CrossRef] [Google Scholar]
- G. B. Chai and P. Manikandan, "Low velocity impact response of fibre-metal laminates–A review," Compos. Struct., vol. 107, pp. 363-381, (2014) [CrossRef] [Google Scholar]
- J. J. Homan, "Fatigue initiation in fibre metal laminates," Int. J. Fatigue, Article vol. 28, no. 4, pp. 366-374, (2006) [CrossRef] [Google Scholar]
- H. Sutherland, "On the fatigue analysis of wind turbines, Sandia National Laboratories," SAND99-0089, Albuquerque, New Mexico, (1999) [Google Scholar]
- R. Alderliesten, "Analytical prediction model for fatigue crack propagation and delamination growth in Glare," Int. J. Fatigue, vol. 29, no. 4, pp. 628-646, (2007) [CrossRef] [Google Scholar]
- P.-Y. Chang and J.-M. Yang, "Modeling of fatigue crack growth in notched fiber metal laminates," Int. J. Fatigue,, vol. 30, no. 12, pp. 2165-2174, (2008) [CrossRef] [Google Scholar]
- T. Sinmazçelik, E. Avcu, M. T. Bora, and O. Çoban, "A review: Fibre metal laminates, background, bonding types and applied test methods," Mater. Des., Review vol. 32, no. 7, pp. 3671-3685, (2011) [Google Scholar]
- Y.-J. Guo and X.-R. Wu, "Bridging stress distribution in center-cracked fiber reinforced metal laminates: modeling and experiment," Eng. Fract. Mech., vol. 63, no. 2, pp. 147-163, (1999) [CrossRef] [Google Scholar]
- A. C. D.-o. C. Materials, Standard test method for tensile properties of polymer matrix composite materials. ASTM International, (2008) [Google Scholar]
- I. De Baere, W. Van Paepegem, M. Quaresimin, and J. Degrieck, "On the tension–tension fatigue behaviour of a carbon reinforced thermoplastic part I: Limitations of the ASTM D3039/D3479 standard," Polym. Test., vol. 30, no. 6, pp. 625-632, (2011) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.