Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 03012
Number of page(s) 8
Section Corrosion Fatigue & Environmental Effects
DOI https://doi.org/10.1051/matecconf/201816503012
Published online 25 May 2018
  1. D. B. Magnus Dahlberg, “Fatigue margins for austenitic stainless steels in ASME boiler and pressure vessel code-a literature study,” (Swedish Radiation Safety Authority, Sweden, 2012). [Google Scholar]
  2. S. M. Takao NAKAMURA, Environmental Fatigue Evaluation in PLM Activities of PWR plant. E-Journal of Advanced Maintenance 2, 82-100 (2010). [Google Scholar]
  3. M. Higuchi, T. Nakamura, Y. Sugie, Development of an Environmental Fatigue Evaluation Method for Nuclear Power Plants in JSME Code. Journal of Environment and Engineering 6, 452-468 (2011). [CrossRef] [Google Scholar]
  4. P. Spätig, H. P. Seifert, 17th Int. Conference on Environmental Degradation of Materials in Nuclear Systems - Water Reactors (TMS, Ottawa, 2015). [Google Scholar]
  5. H. P. Seifert, S. Ritter, H. J. Leber, Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions. Corrosion Science 55, 61-75 (2012). [CrossRef] [Google Scholar]
  6. H. P. Seifert, S. Ritter, H. J. Leber, Corrosion fatigue initiation and short crack growth behaviour of austenitic stainless steels under light water reactor conditions. Corrosion Science 59, 20-34 (2012). [CrossRef] [Google Scholar]
  7. O. C. a. G. L. Stevens, “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials,” (Argonne National Laboratory, Argonne, 2014). [Google Scholar]
  8. U. S. N. R. C. O. o. N. R. Research, Regulatory Guide 1.207 [electronic resource] : guidelines for evaluating fatigue analyses incorporating the life reduction of metal components due to the effects of the light-water reactor environment for new reactors. (U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, [Washington, D.C.], 2007). [Google Scholar]
  9. H. D. Solomon, C. Amzallag, A. J. Vallee, R. E. De Lair, ASME 2005 Pressure Vessels and Piping Conference (ASME, Colorado, 2005). [Google Scholar]
  10. H. J. Leber, S. Ritter, H.-P. Seifert, Thermo-Mechanical and Isothermal Low-Cycle Fatigue Behavior of Type 316L Stainless Steel in High-Temperature Water and Air. CORROSION 69, 1012-1023 (2013). [CrossRef] [Google Scholar]
  11. H. D. Solomon, C. Amzallag, A. J. Vallee, R. E. De Lair, 15th International Conference on Environmental Degration (TMS, Colorado, 2011). [Google Scholar]
  12. D. Kujawski, A deviatoric version of the SWT parameter. International Journal of Fatigue 67, 95-102 (2014). [CrossRef] [Google Scholar]
  13. M. Kamaya, Influence of strain range on fatigue life reduction of stainless steel in PWR primary water. Fatigue & Fracture of Engineering Materials & Structures 40, 2194-2203 (2017). [CrossRef] [Google Scholar]
  14. D. Kuhlmann-Wilsdorf, C. Laird, Dislocation behavior in fatigue. Materials Science and Engineering 27, 137-156 (1977). [CrossRef] [Google Scholar]
  15. M.-S. Pham, S. R. Holdsworth, Evolution of Relationships Between Dislocation Microstructures and Internal Stresses of AISI 316L During Cyclic Loading at 293 K and 573 K (20 °C and 300 °C). Metallurgical and Materials Transactions A 45, 738-751 (2013). [CrossRef] [Google Scholar]
  16. J. Nellessen, S. Sandlöbes, D. Raabe, Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in austenitic stainless steel studied by electron channelling contrast imaging. Acta Materialia 87, 86-99 (2015). [CrossRef] [Google Scholar]
  17. M. Heczko, J. Polák, T. Kruml, Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures. Materials Science and Engineering: A 680, 168-181 (2017). [CrossRef] [Google Scholar]
  18. M. Heczko, P. Spätig, H. P. Seifert, T. Kruml, Correlation between Dislocation Structures and Mechanical Fatigue Response of 316L Austenitic Steel Loaded with and without Mean Stress at High Temperature in Air and Water Environment. Solid State Phenomena 258, 534-537 (2017). [CrossRef] [Google Scholar]
  19. F. H. E. de Haan-de Wilde, F. J. Blom, Overview of International Implementation of Environmental Fatigue (Update). V01AT01A015 (2017). [Google Scholar]
  20. L. Midmore, “Environmentally Assisted Fatigue Gap Analysis and Roadmap for Future Research,” (ELECTRIC POWER RESEARCH INSTITUTE, California, 2011). [Google Scholar]
  21. O. K. Chopra, W. J. Shack, A Review of the Effects of Coolant Environments on the Fatigue Life of LWR Structural Materials. Journal of Pressure Vessel Technology 131, 021409-021409-021421 (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.