Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 03005
Number of page(s) 8
Section Corrosion Fatigue & Environmental Effects
DOI https://doi.org/10.1051/matecconf/201816503005
Published online 25 May 2018
  1. A. M. Brass and J. Chene, “Influence of deformation on the hydrogen behavior in iron and nickel base alloys: A review of experimental data,” Mater. Sci. Engng A, vol. 242, pp. 210– 221, 1998. [CrossRef] [Google Scholar]
  2. J. P. Hirth, “Effects of hydrogen on the properties of iron and steel,” Metall. Trans. A, vol. 11, no. 6, pp. 861–890, 1980. [Google Scholar]
  3. R. P. Gangloff and B. P. Somerday, Gaseous hydrogen embrittlement of materials in energy technologies: mechanisms, modelling and future developments. Elsevier, 2012. [CrossRef] [Google Scholar]
  4. L. Coudreuse, Fragilisation par l’hydrogčne et corrosion sous contrainte; Corrosion sous contrainte – phénoménologie et mécanismes, Ed. D. Des. 1992. [Google Scholar]
  5. Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, J. Wang, and A. Atrens, “A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction,” Corros. Rev., vol. 34, no. 3, pp. 127–152, 2016. [CrossRef] [Google Scholar]
  6. Q. Liu and A. Atrens, “A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels,” Corros. Rev., vol. 31, no. 3–6, pp. 85–103, 2013. [Google Scholar]
  7. J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, and A. Atrens, “A review of hydrogen embrittlement of martensitic advanced high-strength steels,” Corros. Rev., vol. 34, no. 3, pp. 153–186, 2016. [CrossRef] [Google Scholar]
  8. S. Ramamurthy and A. Atrens, “Stress corrosion cracking of high-strength steels,” Corros. Rev., vol. 31, no. 1, pp. 1–31, 2013. [CrossRef] [Google Scholar]
  9. R. J. Walter and W. T. Chandler, “Effects of high-pressure hydrogen on storage vessel materials,” 1968. [Google Scholar]
  10. G. Sandoz, “A unified theory for some effects of hydrogen source, alloying¦elements, and potential on crack growth in martensitic AISI 4340 steel,” Metall. Trans., vol. 3, no. May, pp. 1169–1176, 1972. [CrossRef] [Google Scholar]
  11. W. T. Chandler and R. J. Walter, “Testing to determine the effect of high-pressure hydrogen environments on the mechanical properties of metals,” in Hydrogen embrittlement testing, ASTM International, 1974. [Google Scholar]
  12. W. T. Chandler and R. J. Walter, “Hydrogenenvironment embrittlement of metals and its control,” 1975. [Google Scholar]
  13. J. Toplosky and R. O. Ritchie, “On the influence of gaseous hydrogen in decelerating fatigue crack growth rates in ultrahigh strength steels,” Scr. Metall., vol. 15, no. 8, pp. 905–908, 1981. [CrossRef] [Google Scholar]
  14. N. Bandyopadhyay, J. Kameda, and C. J. Mcmahon, “Hydrogen-induced cracking in 4340-type steel: Effects of composition, yield strength, and H2 pressure,” Metall. Trans. A, vol. 14, no. 4, pp. 881–888, 1983. [CrossRef] [Google Scholar]
  15. R. P. Gangloff, “Hydrogen assisted cracking of high strength alloys,” Compr. Struct. Integr., vol. 6, pp. 31–101, 2003. [CrossRef] [Google Scholar]
  16. C. San Marchi and B. P. Somerday, “Technical Reference On Hydrogen Compatibility Of Materials,” Sand2008-1163, no. code 4001, p. 292, 2012. [Google Scholar]
  17. J. Yamabe, H. Itoga, T. Awane, T. Matsuo, H. Matsunaga, and S. Matsuoka, “Pressure Cycle Testing of Cr – Mo Steel Pressure Vessels Subjected to Gaseous Hydrogen,” vol. 138, no. February, pp. 1–13, 2016. [Google Scholar]
  18. S. Matsuoka, H. Matsunaga, J. Yamabe, S. Hamada, and T. Iijima, “Various strength properties of SCM435 and SNCM439 low-alloy steels in 115 MPa hydrogen gas and proposal of design guideline,” Trans. JSME (in Japanese), vol. 83, no. 854, pp. 17-264-17–00264, 2017. [Google Scholar]
  19. J. Yamabe, T. Matsumoto, S. Matsuoka, and Y. Murakami, “A new mechanism in hydrogenenhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel,” Int. J. Fract., vol. 177, no. 2, pp. 141–162, 2012. [CrossRef] [Google Scholar]
  20. S. Matsuoka, J. Yamabe, and H. Matsuoka, “Criterial for determinating hydrogen compatiblity and the mechanisms for hydrogenassisted, surface crack growth in austenitic stainless steels,” Eng. Fract. Mech., vol. 153, no. 3, pp. 103–127, 2016. [CrossRef] [Google Scholar]
  21. L. W. Tsay, W. C. Lee, R. K. Shiue, and J. K. Wu, “Notch tensile properties of laser-surfaceannealed 17-4 PH stainless steel in hydrogenrelated environments,” Corros. Sci., vol. 44, no. 9, pp. 2101–2118, 2002. [CrossRef] [Google Scholar]
  22. A. Standard, “G142-98" Standard test method for determination of susceptibility of metals to embrittlement in hydrogen containing environments at high pressure, high temperature, or both,” ASTM Int. West Conshohocken, PA, vol. 4, 2004. [Google Scholar]
  23. J. Yamabe et al., “Qualification of chromiummolybdenum steel based on the safety factor multiplier method in CHMC1-2014,” Int. J. Hydrogen Energy, vol. 40, no. 1, pp. 719–728, 2015. [CrossRef] [Google Scholar]
  24. “ANSI/CSA CHMC 1 - 2014: Test Method for Evaluating Material Compatibility in Compressed Hydrogen Applications - Phase I - Metals,” CSA Gr., 2014. [Google Scholar]
  25. B. M. Schönbauer, K. Yanase, and M. Endo, “The influence of various types of small defects on the fatigue limit of precipitation-hardened 17-4PH stainless steel,” Theor. Appl. Fract. Mech., vol. 87, pp. 35–49, 2017. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.