Open Access
Issue
MATEC Web Conf.
Volume 164, 2018
The 3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017)
Article Number 01039
Number of page(s) 13
DOI https://doi.org/10.1051/matecconf/201816401039
Published online 23 April 2018
  1. B. Janissen, T. Huynh. Resources, Conservation & Recycling 128, 110-117 (2018). https://www.sciencedirect.com/science/article/pii/S0921344917303154 [CrossRef] [Google Scholar]
  2. L. Blinova, M. Sirotiak, A. Bartosova, M. Soldan. Slovak University of Technology in Bratislava 25, 40:91-101 (2017). https://www.degruyter.com/view/j/rput.2017.25.issue-40/rput-2017-0011/rput-2017-0011.xml [Google Scholar]
  3. S. Widyotomo. Review Penelitian Kopi dan Kakao 1, 1:63-80 (2013). [in Bahasa Indonesia]. https://anzdoc.com/download/potensi-dan-teknologi-diversifikasi-limbah-kopi-menjadi-prod.html?reader=1. [Google Scholar]
  4. J.F. Calzada, O.R. deLeon, M.C. deArriola, F. deMicheo, C. Rolz, C., R. de Leon, et al. Biotechnology Letters 3, 12:713-716 (1981). https://link.springer.com/article/10.1007/BF00134849 [CrossRef] [Google Scholar]
  5. T. Widjaja, T. Iswanto, A. Altway, M. Shovitri, S.R. Juliastuti. Methane Production from Coffee Pulp by Microorganism of Rumen Fluid and Cow Dung in Co-digestion. Chemical Engineering Transactions 56, 1465-1470 (2017). https://www.researchgate.net/profile/Toto_Iswanto/publication/319417335_Methane_Production_from_Coffee_Pulp_by_Microorganism_of_Rumen_Fluid_and_Cow_Dung_in_Co-digestion/links/59a92cd7a6fdcc2398414dd9/Methane-Production-from-Coffee-Pulp-by-Microorganism-of-Rumen-Fluid-and-Cow-Dung-in-Co-digestion.pdf. [Google Scholar]
  6. L. Fan, A.T. Soccol, A. Pandey, C.R. Soccol. Micologia Aplicada International 15, 15-21 (2003). https://www.researchgate.net/publication/26484135_Cultivation_of_Pleurotus_mushrooms_on_Brazilian_coffee_husk_and_effects_of_caffeine_and_tannic_acid [Google Scholar]
  7. S.R. Juliastuti, T. Widjaja, A. Altway, T. Iswanto. AIP Conference Proceedings 1840, 1 (2017). DOI:10.1063/1.4982341. https://aip.scitation.org/doi/abs/10.1063/1.4982341 [Google Scholar]
  8. Y.E. Bombardiere. The Potensial of Anaerobic Technology to Treat Coffee Waste in Huatusco, Mexico. [Thesis]. The Center for International Studies of Ohio University, Athens, USA, (2006). pp.85. https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1152557924 [Google Scholar]
  9. E. Novita, S. Wahyuningsih. Teknologi Penanganan Limbah Cair untuk Mewujudkan Lingkungan Perkebunan Kopi Rakyat yang Sehat, Produktif dan Berkelanjutan [Liquid Waste Technology Process to Develop a Healthy, Productive and Sustainable Peasant Coffee Plantation] [Online] from http://repository.unej.ac.id/bitstream/handle/123456789/73730/Lap_Akhir_Stranas%202015_Elida%20Novita.pdf?sequence=1. (2015). [Accessed on 5 April 2017]. [in Bahasa Indonesia] [Google Scholar]
  10. C. Rolz, J.F. Menchu, F. Calzada, R. de Leon, R. Garcla. Process Biochemistry 17, 2:8-11 (1982). https://www.cabdirect.org/cabdirect/abstract/19822413679 [Google Scholar]
  11. S. Mulato. Case Study of Biogas Production from Plant-Based Materials and Animal Manure Resources Available In the Cocoa and Coffee Farms. 2009 International Workshop on Developing Bioenergy and Conserving the Natural Ecosystem in APEC Member Economies (Seoul, Korea, 2009). 2009 APEC Workshop Developing Bioenergy and Conserving the Natural Ecosystem in APEC Member Economies in APEC Member Economies: 79-96 https://apec.org/Publications/2010/02/2009-International-Workshop-on-Developing-Bioenergy-and-Conserving-the-Natural-Ecosystem-in-APEC-Mem [Google Scholar]
  12. S. Mulato, E. Suharyanto. Case Study of Biogas Production from Plant-Based Materials and Animal Manure Resources Available in the Coffee Farm. Proceedings of 22th International Conference on Coffee Science, Bali, Indonesia: ASIC 3-8 Oktober 2010 https://www.asic-cafe.org/conference/23rd-international-conference-coffee-science/case-study-biogas-production-plant-based [Google Scholar]
  13. E. Novita. Desain Proses Pengolahan pada Agroindustri Kopi Robusta Menggunakan Modifikasi Teknologi Olah Basah Berbasis Produksi Bersih [Process Design of Robusta Coffee Agro Industry Using Wet Processing Technology Modification Based on Cleaner Production. [Dissertation]. Institut Pertanian Bogor, Bogor, Indonesia (2012). p. 325. http://repository.ipb.ac.id/handle/123456789/55728 [Google Scholar]
  14. R. Steiner. Biogas Production of Coffee Pulp & Waste Water [Online] from www.repic.ch/index.php/download_file/359/358/ (2011). [Accessed on 15 October 2017] [Google Scholar]
  15. R. Bello-Mendoza, M.F. Castillo-Rivera. Anaerobe 4, 5:219-225 (1998). https://www.sciencedirect.com/science/article/pii/S1075996498901718 [CrossRef] [Google Scholar]
  16. L.H. Quang. Making Use of Tannery Chromium Containing Sludge as Feed for Biogas Plant. [Thesis]. Central Ostrobothnia University of Aplied Sciences (2011) p.92 http://www.theseus.fi/bitstream/handle/10024/29164/Thesis+-+COU+-+Le+Huy+Quang.pdf;jsessionid=508979EDE18F4FE8934D7F9DC4C62613?sequence=1 [Google Scholar]
  17. A. Dahiya (Eds). Bioenergy, Biomass to Biofuels. UK: Academic Press (2015). p 619. https://www.amazon.com/Bioenergy-Biomass-Biofuels-Anju-Krivov/dp/0124079091 [Google Scholar]
  18. A. Wellinger, J. Patrick Murphy, D. Baxter (Eds). The Biogas Handbook: Science, Production and Applications. UK Woodhead Publishing (2013). p. 512. https://www.amazon.com/Biogas-Handbook-Production-Applications-Publishing/dp/085709498X [Google Scholar]
  19. Hofmann, M. and Baier, U.. 2003. Abstract In: Vergärung von Pulpa aus der Kaffee- Produktion. Energieforschung Forschungs- und PhD-Programm Biomass Bundesamts für Energie BFE pp. 33 [in German] http://www.bfe.admin.ch/php/modules/enet/streamfile.php?file=000000007800.pdf&name=230057.pdf [Google Scholar]
  20. Direktorat Jenderal Perkebunan, Kementrian Pertanian. 30 Produk Perkebunan Indikasi Geographis [30 Plantation Products with Geographical Indication] [Online] from http://ditjenbun.pertanian.go.id/berita-421-30-produk-perkebunan-indikasi-geografis.html (2016). [Accessed on 5 January 2018]. [in Bahasa Indonesia] [Google Scholar]
  21. A.B. Karki, K. Dixit. Biogas fieldbook. Khatmandu: Sahayogi Press (1984). p.171. http://agris.fao.org/agris-search/search.do?recordID=NP8600002 [Google Scholar]
  22. M. Schön. Numerical Modelling of Anaerobic Digestion Processes in Agricultural Biogas Plants. [Dissertation]. Technische Universität München, Germany, (2009). p. 157. https://www.uibk.ac.at/umwelttechnik/teaching/phd/diss_schoen_2009_numerical-modelling-of-biogas-plants.pdf [Google Scholar]
  23. D. Deublein, A. Steinhauser. 2008 Biogas from Waste and Renewable Resources; Wiley Online Library: Weinheim, Germany. p. 429. http://onlinelibrary.wiley.com/book/10.1002/9783527621705 [CrossRef] [Google Scholar]
  24. A. Schnürer, Å. Jarvis. Microbiological Handbook for Biogas Plants Swedish Waste Management U2009:03 Swedish Gas Centre Report 207 [Online] from http://www.eac-quality.net/fileadmin/eac_quality/user_documents/3_pdf/Microbiological_handbook_for_biogas_plants.pdf (2010. [Accessed on 20 May 2017] [Google Scholar]
  25. G.D. Zupancic, V. Grilc. Anaerobic Treatment and Biogas Production from Organic Waste, In: Management of Organic Waste. Sunil K. (Eds). Rijeka, Croatia, Shanghai, China: InTech. (2012). p 28. https://www.intechopen.com/books/howtoreference/management-of-organic-waste/anaerobic-treatment-and-biogas-production-from-organic-wastes [Google Scholar]
  26. K. Fricke, H. Santen, R. Wallmann, A. Hüttner, N. Dichtl. Waste Manag. 2007;27(1):30-43 (2007) https://www.ncbi.nlm.nih.gov/pubmed/16860554 [CrossRef] [Google Scholar]
  27. U. Marchaim. Biogas Processes for Sustainable Development. Rome: FAO (1992). p. 254. http://www.fao.org/docrep/t0541e/T0541E00.htm [Google Scholar]
  28. I. Angelidaki, L. Ellegaard. Applied Biochemistry and Biotechnology, 109, (1-3):95-106 (2003). https://link.springer.com/article/10.1385/ABAB:109:1-3:95 [CrossRef] [Google Scholar]
  29. N.A. Dzung, T.T. Dzung, V.T. Phuong Khanh. 2013. Resources and Environment 3, 4:77-82. http://article.sapub.org/10.5923.j.re.20130304.03.html [Google Scholar]
  30. M. Tadesse, A. Mebratu. International Journal of Recent Development in Engineering and Technology, 6, 1:18-30 (2017). http://www.ijrdet.com/files/Volume6Issue1/IJRDET_0117_04.pdf. [Google Scholar]
  31. G.N. Demirer, S. Chen. Process Biochemistry, 40, 11:3542-3549 (2005). https://www.sciencedirect.com/science/article/pii/S1359511305001923 [CrossRef] [Google Scholar]
  32. P.G. Adinurani, R.H. Setyobudi, A. Nindita, S.K. Wahono, M. Maizirwan, A. Sasmito, Y.A. Nugroho, T. Liwang. Energy Procedia 65:264-273 (2015). https://ac.els-cdn.com/S1876610215000478/1-s2.0-S1876610215000478-main.pdf?_tid=e7f7e647-f845-4103-a871-b25bed4c9de5&acdnat=1521028434_52192956794b4b62ea2502dedc9c71d4 [CrossRef] [Google Scholar]
  33. G. Corro, L. Paniagua, U. Pal, F. Banuelos, M. Rosas. Energy Conversion and Management 74:471-481 (2013). https://www.sciencedirect.com/science/article/pii/S0196890413003889 [CrossRef] [Google Scholar]
  34. E. Fischer, T. Schmidt, S. Hora, J. Giersdorf, W. Stinner, F. Scholwin. Agro-Industrial Biogas in Kenya. Potentials, Estimates for Tariffs, Policy and Business Recommendations [Online] from http://kerea.org/wp-content/uploads/2012/12/Agro-Industrial-Biogas-in-Kenya.pdf. (2010). [Accessed on 5 April 2017] [Google Scholar]
  35. C. Nzila, D. Njuguna, D. Madara, J. Githaig, R. Muasya, A. Muumbo, H. Kiriamit. Journal of Emerging Trends in Engineering and Applied Sciences 6, 5:327-334 (2015). https://www.researchgate.net/publication/308795332_Characterization_of_Agro-Residues_For_Biogas_Production_and_Nutrient_Recovery_In_Kenya [Google Scholar]
  36. J.H. Martin. An Evaluation of a Mesophilic, Modefied Plug Flow Anaerobic Digester for Dairy Cattle Manure [Online] from http://www.dvoinc.com/documents/gordondale_report_final.pdf. (2005). [Accessed on 20 May 2017] [Google Scholar]
  37. B.S.U.I. Abubakar, N. Ismail. ARPN Journal of Engineering and Applied Sciences, 7, 2:169-172 (2012). https://pdfs.semanticscholar.org/88a3/6a207992acfffa045a87a0b8eb04aa1d994e.pdf. [Google Scholar]
  38. J.A. Oleszkiewicz, H.M. Poggi-Varaldo. Journal of Environmental Engineering, 123, 11:1087-1092 (1997). https://www.researchgate.net/publication/245299570_High-Solids_Anaerobic_Digestion_of_Mixed_Municipal_and_Industrial_Waste [CrossRef] [Google Scholar]
  39. M.H. Gerardi. The Microbiology of Anaerobic Digesters. New Jersey: A John Wiley & Sons, Inc. (2003). p. 192. http://onlinelibrary.wiley.com/book/10.1002/0471468967 [Google Scholar]
  40. I. Angelidaki, W. Sanders. Reviews in Environmental Science and Bio/Technology, 3, 2:117-129 (2004). https://link.springer.com/article/10.1007/s11157-004-2502-3 [CrossRef] [Google Scholar]
  41. S. Goswami. Optimization of Methane Production from Solid Organic Waste [Online] (2004) from https://mafiadoc.com/optimization-of-methane-production-from-solid-_59a41c471723dd0a40e084a5.html. [Accessed on 20 May 2012]. [Google Scholar]
  42. J.A. Ogejo, Z. Wen, J. Ignosh, E. Bendfeldt, E.E.R. Collins. Biomethane Technology [Online] from https://pubs.ext.vt.edu/442/442-881/442-881_pdf.pdf. (2009). [Accessed on 6 April 2017] [Google Scholar]
  43. de Graaf Daniel, and Fendler, R.. 2010. Biogas production in Germany. SPIN background paper. p. 29 http://www.spin-project.eu/downloads/0_Background_paper_biogas_Germany_en.pdf [Google Scholar]
  44. H.B. Moller, S.G. Sommer, B.K. Ahring. J. Environ Quality, 33, 1:27-36 (2004). https://www.ncbi.nlm.nih.gov/pubmed/14964355 [CrossRef] [Google Scholar]
  45. H.B. Moller, S.G. Sommer, B.K. Ahring. Biomass Bioenergy, 26, 5:485-495 (2004). https://www.sciencedirect.com/science/article/pii/S0961953403001569 [CrossRef] [Google Scholar]
  46. M.F. Mahesa. Esterifikasi Senyawa Polifenol dari Ekstrak Kulit Biji Kopi dengan Asam p-Hidroksibenzoat dengan Menggunakan katalis SiO2 - H2SO4 [Polyphenol Esterification of Skin Coffee Bean Extract Using p-Hydroxybenzoate Acid an SiO2 - H2SO4 Catalyst]. [Thesis]. Universitas Indonesia, Jakarta (2012). p. 103. http://lib.ui.ac.id/file?file=digital/20308463-T31079-Esterifikasi%20senyawa.pdf [Google Scholar]
  47. R. Bressani. The By-Products of Coffee Berries. In: Coffee Pulp, Composition, Technology and Utilization. J.E. Braham, R. Bressani (Eds.). Ottawa: International Development Research Centre (1979). pp. 5-10. https://idl-bnc-idrc.dspacedirect.org/handle/10625/6006 [Google Scholar]
  48. A. Das, N. Venkatachalapathy. International Journal of Applied and Natural Sciences, 5, 1:75-82 (2016). https://archive.org/details/10.PROFITABLEEXPLOITATIONOFCOFFEEPULPAREVIEW [Google Scholar]
  49. R. Eka, N. Ahmad, S.C. Titi. 2013. Karakterisasi dan Pre-Treatment Kulit Kopi Hasil Samping Pengolahan Kopi Metode Kering untuk Produksi Bioetanol. [Characterization and Pre-Treatment of Coffee Pulp from Coffee Processing Dry Methods for Bioethanol Production.] Abstrak dan Excecutive Summary.Universitas Jember (2013) p.10 [in Bahasa Indonesia]. http://repository.unej.ac.id/bitstream/handle/123456789/61192/Eka%20Ruriani_pekerti_dipa_45.pdf;sequence=1 [Google Scholar]
  50. W. Parawira. Anaerobic Treatment of Agricultural Residues and Wastewater Application of High-Rate Reactors. [Doctoral Dissertation]. Lund University, Sweden (2004). p.60. https://lup.lub.lu.se/search/ws/files/5606523/1472236.pdf. [Google Scholar]
  51. B. Demirel, P. Scherer. Biomass and Engineering, 32, 3:203-209 (2008). https://www.sciencedirect.com/science/article/pii/S0961953407001523 [CrossRef] [Google Scholar]
  52. A. Pandey, C.R. Soccol, P. Nigam, D. Brand. Biochem. Eng. J., 6, 2:153-162 (2000). https://www.ncbi.nlm.nih.gov/pubmed/10959086 [CrossRef] [Google Scholar]
  53. Y. Chen, J.J. Cheng, K.S. Creamer. Bioresource Technology, 99, 10:4044-4064 (2008). https://www.sciencedirect.com/science/article/pii/S0960852407001563 [CrossRef] [PubMed] [Google Scholar]
  54. J.E.G. van Dam, P.F.H. Harmsen. Coffee Residues Utilization. Netherlands: Wageningen UR Food & Biobased Research. p. 75. http://library.wur.nl/WebQuery/wurpubs/503808 [Google Scholar]
  55. N.D. Siswati, M. Yatim, R. Hidayanto. Bioetanol dari limbah kulit kopi dengan proses fermentasi [Bio-ethanol production from coffee peel waste with fermentation process]. [Online] from https://media.neliti.com/media/publications/134134-ID-none.pdf http://ejournal.upnjatim.ac.id/index.php/tekkim/article/download/80/63 (n.d.).p.4.[Accessed on 6 April 2017]. [in Bahasa Indonesia]. [Google Scholar]
  56. E. Houbron, A. Larrinaga, E. Rustria. Water Science & Technology, 48, 6:255-262 (2003). https://www.ncbi.nlm.nih.gov/pubmed/14640226 [CrossRef] [Google Scholar]
  57. E. Ruriani, A. Nafi, T.C. Sunarti. Karakterisasi Kulit Kopi Hasil Samping Pengolahan Kopi Metode Kering untuk Produksi Bioetanol [Skin Coffee Characterization as By-product of Dry Methods Coffee Processing for Bio-ethanol Production]. Seminar Nasional Perhimpunan Ahli Teknologi Pangan Indonesia (Jember, Indonesia, 2013). http://repository.unej.ac.id/handle/123456789/61192 [Google Scholar]
  58. W. Irawaty, H. Hindarso, Felycia E.S., Y. Mulyono, H. Kurniawan. Utilization of Indonesian Coffee Pulp to Make an Activated Carbon. Asian Pacific Confederation of Chemical Engineers congress program and abstracts. DOI: 10.11491/apcche.2004.0.452.0 (2004). https://www.jstage.jst.go.jp/article/apcche/2004/0/2004_0_452/_article [Google Scholar]
  59. United Nations. Updated Guidebook on Biogas Development, Energy Resources Development Series No. 27 [Online] from https://www.ircwash.org/sites/default/files/352.1-84UP-3638.pdf (1984). [Accessed on 6 April 2017] [Google Scholar]
  60. M.T. Madigan, J.M. Martinko. Brock Biology of Microorganisms. 11th ed. New Jersey: Pearson Prentice Hall (2006). p. 1056. https://www.amazon.com/Brock-Biology-Microorganisms-11th-J-K/dp/B0028IGIJE [Google Scholar]
  61. R. Zhang, Z. Zhang. Bioresource Technology 68, 3:235-245 (1999). https://www.sciencedirect.com/science/article/pii/S0960852498001540 [CrossRef] [Google Scholar]
  62. F.S. Higashikawa, C.A. Silva, W. Bettiol. Revista Brasileira de Ciência do Solo 34, 5:1743-1752 (2010). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832010000500026 [Google Scholar]
  63. M. Kayhanian, G. Tchobanoglous, R.C. Brown. Handbook of Energy Efficiency and Renewable Energy. USA: CRC Press (2007). Pp. 25.4-25.8. https://www.amazon.com/Efficiency-Renewable-Mechanical-Aerospace-Engineering/dp/0849317304 [Google Scholar]
  64. C.P.L. Grady, H.C. Lim. Biological Wastewater Treatment: Theory and Applications. New York: Marcel Dekker (1980). p. 963. https://books.google.co.id/books/about/Biological_Wastewater_Treatment.html?id=pDtiQgAACAAJ&redir_esc=y [Google Scholar]
  65. G.F. Parkin, R.E. Speece, C.H.L. Yang, W.M. Kocher. Journal WPCF, 55, 1:44-53 (1983). https://www.jstor.org/stable/25041796 [Google Scholar]
  66. I. Hartati, I. Riwayati, L. Momentum, 7, 2:25-30 (2011). [in Bahasa Indonesia] [Google Scholar]
  67. U. Zuhail. Gum Xanthan [Online] https://ummuzuhail.wordpress.com/dunia/gum-xanthan/ (n.d.). [Accessed on 25 December 2017]. [Google Scholar]
  68. I. Riwayati, I. Hartati, H. Purwanto, Suwardiyono. Adsorpsi Logam Berat Timbal dan Kadmium pada Limbah Batik Menggunakan Biosorbent Pulpa Kopi Terxanthasi [Adsorption of Lead and Cadmium Metals in Batik Waste Using Biosorbent Xanthate Coffee Pulp]. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014 (Yogyakarta, Indonesia, 2014). SNAST 2014:C211-C216 (2014). https://www.researchgate.net/publication/290838755_ADSORPSI_LOGAM_BERAT_TIMBAL_DAN_KADMIUM_PADA_LIMBAH_BATIK_MENGGUNAKAN_BIOSORBENT_PULPA_KOPI_TERXANTHASI [Google Scholar]
  69. LW. Hadayani, I. Riwayati, R.D. Ratnani. Momentum, 11, 1:19-23 (2015). [in Bahasa Indonesia]. https://publikasiilmiah.unwahas.ac.id/index.php/MOMENTUM/article/view/1077 [Google Scholar]
  70. L.S. Oliveira, A.S. Franca, T.M. Alves, S.D.F. Rocha. J. Hazardous Mat. 155, 3:507-512 (2008). https://www.sciencedirect.com/science/article/pii/S0304389407017177 [CrossRef] [Google Scholar]
  71. I. Gaime-Perraud, S. Roussos, D. Martínez-Carrera. Micol Neotrop Apl, 6:95-103 (1993). http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/b_fdi_35-36/39745.pdf. [Google Scholar]
  72. T. Jayachandra, C. Venugopal, K.A.A. Appaaiah. Energy Sustain Develop, 15, 1:104-108 (2011). https://www.infona.pl/resource/bwmeta1.element.elsevier-9ea1f3a7-a107-3fbb-b929-22ae8c49d93a [CrossRef] [Google Scholar]
  73. A.K. Kivaisi. Tanz. J. Science, 28, 2:1-10 (2002). https://www.ajol.info/index.php/tjs/article/view/18349 [Google Scholar]
  74. A. Ramakrishnan, R.Y. Surampalli. Bioresource Technology, 123:352-359 (2012). https://www.ncbi.nlm.nih.gov/pubmed/22940341 [CrossRef] [Google Scholar]
  75. N.V. Pradepp, S. Anupama, K. Navya, H.N. Shalini, M. Idris, U.S. Hampannavar.. Water Science, 5, 2:105-112 (2015). https://link.springer.com/article/10.1007/s13201-014-0176-8 [CrossRef] [Google Scholar]
  76. S.B. Ariyani. Jurnal Biopropal Industri 2 (1): 14-20 (2011). [in Bahasa Indonesia]. http://download.portalgaruda.org/article.php?article=416282&val=8391&title=Decreased%20Levels%20of%20Fenol%20in%20the%20Case%20of%20Traditional%20Herb%20Industry%20using%20Anaerobic%20Activated%20Sludge%20Method [Google Scholar]
  77. L. Hinken, I. Urban, E. Haun, D. Weichgrebe, K.H. Rosenwinkel. Water Sci. Technol. 58, 7:1453-1459 (2008). https://www.ncbi.nlm.nih.gov/pubmed/18957759 [CrossRef] [Google Scholar]
  78. N.R. Raju, S.S. Devi, K. Nand. Biotechnol. Lett., 13, 6:461-464 (1991). https://link.springer.com/article/10.1007/BF01031002 [CrossRef] [Google Scholar]
  79. F.E. Mosey, D.A. Hughes. Journal Institute Water Pollution Control, 1:3-24 (1975). https://www.researchgate.net/publication/279573236_The_Toxicity_of_Heavy_Metal_Ions_to_Anaerobic_Digestion [Google Scholar]
  80. L.G. Elias. Chemical Composition of Coffee-Berry. In: Coffee Pulp: Composation, Technology, and Utilization. J.E. Braham, R. Bressani (Eds.). Ottawa:The International Development Research Centre (1979). pp. 12-16. https://idl-bnc-idrc.dspacedirect.org/handle/10625/6006 [Google Scholar]
  81. F.H. Orozco, J. Cegarra, L.M. Trujillo, A. Roig. Biol Fertil Soils, 22, 1-2:162-166 (1996). https://link.springer.com/article/10.1007/BF00384449 [CrossRef] [Google Scholar]
  82. S.N. Avinash, C.A. Srinivasamurthy, S. Bhaskar, N.B. Prakash. International Journal of Current Microbiology and Applied Sciences, 6, 10:2265-2272 (2017). https://www.researchgate.net/publication/320562129_Characterization_Extraction_and_Foliar_Spray_of_Fortified_Humic_Acid_on_Quality_of_Capsicum [CrossRef] [Google Scholar]
  83. W.A. Asfimanto, T. Nurlambang, T. Waryono. Pengaruh Kondisi Fisik dan Budidaya Terhadap Kualitas Kopi di Kintamani dan Gayo [Effect of Physical Condition and Cultivation on the Quality Coffee in Kintamani and Gayo] [Online] from http://lontar.ui.ac.id/naskahringkas/2016-04/S47782-Asfirmanto%20W%20A (2013). [Accessed on 20 May 2017] [Google Scholar]
  84. S. Hasibuan, B.K. Djatmo, K.H. Nitimulyo, E. Hanudin. Jurnal Dinamika Pertanian 29, 1:97-106 (2014). http://journal.uir.ac.id/index.php/dinamikapertanian/article/view/864 [Google Scholar]
  85. R. Nandini, B.H. Narendra. Jurnal Penelitian Hutan dan Konservasi Alam, 9, 3:199-211 (2012). https://www.researchgate.net/publication/319230455_KARAKTERISTIK_LAHAN_KRITIS_BEKAS_LETUSAN_GUNUNG_BATUR_DI_KABUPATEN_BANGLI_BALI [CrossRef] [Google Scholar]
  86. P.G. Adinurani, R.H. Setyobudi, S.K. Wahono, M. Mel, A. Nindita, E. Purbajanti, et al.. Proceedings of the Pakistan Academy of Sciences B. Life and Environmental Sciences, 54, 1:47-57 (2017). http://www.paspk.org/wp-content/uploads/2017/03/Ballast-Weight-Review-of-Capsule-Husk-Jatropha-curcas-Linn.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.