Open Access
MATEC Web Conf.
Volume 164, 2018
The 3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017)
Article Number 01029
Number of page(s) 11
Published online 23 April 2018
  1. R. Tabata, A. Hayashi, S. Tokunaga, S. Saiki, M. Nakamura, S. Matsumoto. Implementation and evaluation of BLE proximity detection mechanism for pass-by framework. International Conference on Computer and Information Science (ICIS), 26-29 June 2016 (Okayama, Japan, 2016). IEEE, pp. 1-6 (2016). [Google Scholar]
  2. T. Nilsson, C. Hogsden, C. Perera, S. Aghaee, D.J. Scruton, A. Lund, et al. ACM Trans. Multimed. Comput. Commun. Appl., 12(4):1-23 (2016). [CrossRef] [Google Scholar]
  3. S.M.H. Sharhan, S. Zickau. Indoor mapping for location-based policy tooling using bluetooth low energy beacons. Wireless and Mobile Computing, Networking and Communications (WiMob) Proceedings, 19-21 October 2015 (Abu Dhabi, United Arab Emirates, 2015). IEEE, pp. 28-36 (2015). [Google Scholar]
  4. Y. Yang, Zhouchi Li, K. Pahlavan. Using iBeacon for intelligent in-room presence detection. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA) Proceedings, 21-25 March 2016 (San Diego, CA, USA, 2016). IEEE, pp. 187-191 (2016). [Google Scholar]
  5. M.N. Al-Azam, B. Anindito. BLE observer device menggunakan raspberry Pi 3 untuk menentukan lokasi Ble broadcaster. [BLE observer device using raspberry Pi 3 to determine the location of Ble broadcaster]. Seminar Nasional Teknologi Dan Informatika (SNATIF), Universitas Muria Kudus (Kudus, Jawa Tengah, Indonesia, 2016). pp. 181-188 (2016). [in Bahasa Indonesia]. [Google Scholar]
  6. J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, C. Gomez. IPv6 over BLUETOOTH(R) low energy. Internet Engineering Task Force (IETF), RFC7668 (2015). [Google Scholar]
  7. V. Vujovic, M. Maksimovic. Raspberry Pi as a wireless sensor node: Performances and constraints. Information and Communication Technology, Electronics and Microelectronics (MIPRO) Proceedings, 26-30 May, 2014 (Opatija, Croatia, 2014). IEEE, pp. 1013-1018 (2014). [Google Scholar]
  8. E. Upton, G. Halfacree. Raspberry Pi user guide. New Jersey: Willey Publishing (2014). pp. 4. [Google Scholar]
  9. D. Rachman, M.N. Al-Azam, B. Anindito. Sistem pemantau & pengendalian rumah cerdas menggunakan infrastuktur internet messaging. [Intelligent Home Monitoring and Control System Using Internet Messaging Infrastructure]. Jurnal Ilmiah Link, 26(1):1-6 (2017). [in Bahasa Indonesia]. [Google Scholar]
  10. D. Japhet, K. Ndai. Int. J. Sci. Eng. Res., 7(10):1043-1052 (2016). [Google Scholar]
  11. S. Monk. Programming the Raspberry Pi: getting started with Python. New York: McGraw Hill Education, (2016). pp. 24. [Google Scholar]
  12. J. Hendberg. Release of BlueZ 5.48. BlueZ, Official Linux Bluetooth Protocol Stack [online] from (2017). [Accessed on 5 January 2018]. [Google Scholar]
  13. F.E. Karuna, M.N. Al-Azam. Pengembangan prototipe quick response code (QR Code) sebagai autentikasi keamanan login sistem dengan memanfaatkan teknologi android. [Development of Prototype Quick Response Code (Qr Code) As Login Authentication System Security Utilizing Android Technology]. Surabaya: Sistem Komputer Universitas Narotama, (2016). [in Bahasa Indonesia]. [Google Scholar]
  14. C. Darujati, M. Hariadi. Facial motion capture with 3D active appearance models. The 3rd International Conference Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), 7-8 November 2013 (Bandung, Indonesia, 2013). IEEE, pp. 59-64 (2014). [Google Scholar]
  15. J. Stark, B. Jepson, B. MacDonald. Building Android apps with HTML, CSS, and JavaScript: making native apps with standards-based web tools. Beijing: O'Reilly Media (2010). pp. 110. [Google Scholar]
  16. J.M. Wargo. PhoneGap essentials: Building cross-platform mobile apps. Boston: Addison-Wesley (2012). pp. 45. [Google Scholar]
  17. Cordova. Cordova plugin for ibeacon. Mobile apps with HTML, CSS & JS [online] from [Accessed on 7 December 2017] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.