Open Access
Issue |
MATEC Web Conf.
Volume 164, 2018
The 3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017)
|
|
---|---|---|
Article Number | 01023 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/matecconf/201816401023 | |
Published online | 23 April 2018 |
- M. Dash, H. Liu. Intelligent Data Analysis, 1(1-4):131-156 (1997). https://www.sciencedirect.com/science/article/pii/S1088467X97000085 [CrossRef] [Google Scholar]
- J. Bins, B. Draper. Feature selection from huge feature sets. Proceedings on Eighth IEEE International Conference on Computer Vision (Vancouver, Canada, 2001). http://ieeexplore.ieee.org/document/937619/ [Google Scholar]
- K. Kira, L. Rendell. The Feature Selection Problem: Traditional Methods and a New Algorithm, AAAI 92 Proceedings, pp. 129-134, (San Jose, California, 1992) https://www.aaai.org/Papers/AAAI/1992/AAAI92-020.pdf [Google Scholar]
- MacQueen, J., Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of the Fifth Berkley Symposium on Mathematics, Statistics and Probability, pp. 281-297, 1967. [Google Scholar]
- I. Guyon, A. Elisseeff. J. Mach. Learn. Res. 3:1157-1182 (2003). http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf [Google Scholar]
- Maroño, N.S., Betanzos, A. & Castillo, E., A new wrapper method for feature subset selection. Proceedings European Symposium on Artificial Neural Networks, pp. 515-520. (Belgium, 2005). https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2005-106.pdf [Google Scholar]
- A.G. Karegowda, M.A. Jayaram, A.S. Manjunath. IJCA, 23(2):1-10 (2011). http://www.ijcaonline.org/archives/volume23/number2/2865-3711 [CrossRef] [Google Scholar]
- H. Zhang, G. Sun. Pattern Recognit. 35(3):701-711 (2002). https://www.sciencedirect.com/science/article/pii/S0031320301000462 [CrossRef] [Google Scholar]
- P. Pudil, J. Novovicova, J. Kittler. Pattern Recognit. Lett. 15(11):1119-1125 (1994). https://www.sciencedirect.com/science/article/pii/0167865594901279 [CrossRef] [Google Scholar]
- P. Somol, P. Pudil, J. Novovicova. Flexible hybrid sequential floating search in statistical feature selection. Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science. A. Fred, T. Caelli, R.P.W. Duin, A. Campilho, D. Ridder (eds.), Springer, 4109:632-639 (2006). https://link.springer.com/chapter/10.1007/11815921_69 [CrossRef] [Google Scholar]
- S. Nakariyakul, D.P. Casasent. Pattern Recognit. 41(9):1932-940 (2009). https://www.sciencedirect.com/science/article/pii/S0031320308004937 [CrossRef] [Google Scholar]
- O. Sornil. Filter-based feature selection using two criterion functions and evolutionary fuzzification. International Workshop on Multi-disciplinary Trends in Artificial Intelligence. Springer International Publishing. (Chiang Mai, Thailand, 2016). https://link.springer.com/chapter/10.1007/978-3-319-49397-8_15 [Google Scholar]
- Z. Yongli, Z. Yungui, T. Weiming, C. Hongzhi. An improved feature selection algorithm based on MAHALANOBIS distance for network intrusion detection. International Conference on Sensor Network Security Technology and Privacy Communication System (SNS & PCS), IEEE (Nangan, China, 2013). http://ieeexplore.ieee.org/document/6553837/ [Google Scholar]
- R. Battiti. IEEE Transactions on Neural Networks, 5(4):537-550 (1994). http://ieeexplore.ieee.org/document/298224/ [Google Scholar]
- D. Goldberg. Genetic algorithms in search, optimization, and machine learning. Boston: Addison Wesley (1989). https://dl.acm.org/citation.cfm?id=534133 [Google Scholar]
- F. Brill, D. Brown, W. Martin. IEEE Transactions: Neural Networks, 3(2):324-328 (1992). http://ieeexplore.ieee.org/document/125874/ [CrossRef] [Google Scholar]
- I.S. Oh, J.S. Lee, B.R. Moon. IEEE Transactions: Pattern Analysis and Machine Intelligence, 26(11):1424-1437 (2004). http://ieeexplore.ieee.org/document/1335448/ [CrossRef] [Google Scholar]
- A. Asuncion, D.J. Newman. UCI machine learning repository. University of California, Department of Information and Computer Science. [Online] from http://archive.ics.uci.edu/ml/index.php [Google Scholar]
- L. Brieman, J. Friedman, R. Olshen, C. Stone. Classification of regression trees. Routledge: Wadsworth Inc. (1984). https://books.google.co.id/books?id=gLs6DwAAQBAJ [Google Scholar]
- C. Cortes, V. Vapnik. Machine Learning, 20(3):273-297 (1995). https://link.springer.com/article/10.1007/BF00994018 [Google Scholar]
- Ratanamahatana, C. & Gunopulos, D.. Appl. Artif. Intell., 17(5 6):475-487 (2003). http://www.tandfonline.com/doi/abs/10.1080/713827175 [CrossRef] [Google Scholar]
- H. Liu, H. Motoda, L. Yu. Artificial Intelligence, 159(1-2):49-74 (2004). https://www.sciencedirect.com/science/article/pii/S0004370204000980 [CrossRef] [Google Scholar]
- H. Anwar, U. Qamar, A.W.M. Qureshi. Sci. World J. 2014(Article ID 313164): -9 (2014). https://www.hindawi.com/journals/tswj/2014/313164/ [Google Scholar]
- T. Yang, L. Cao, C. Zhang. A novel prototype reduction method for the K-nearest neighbor algorithm with K ≥ 1. Pacific Asia Conference on Knowledge Discovery and Data Mining Part II:89-00 (Hyderabad, India, 2010). https://link.springer.com/chapter/10.1007/978-3-642-13672-6_10 [Google Scholar]
- A. Gupta. IJSTR, 4(5):85-94 (2015). http://www.ijstr.org/final-print/may2015/Classification-Of-Complex-Uci-Datasets-Using-Machine-Learning-And-Evolutionary-Algorithms.pdf [Google Scholar]
- C.F. Tsai, W.Y. Lin, Z.F. Hong, C.Y. Hsieh. EURASIP Journal on Advances in Signal Processing, 2011(62):2-11 (2011). https://link.springer.com/article/10.1186/1687-6180-2011-62 [CrossRef] [Google Scholar]
- D. Lavanya, D.K.U. Rani. IJCSE 2(5):756-763 (2011). http://www.ijcse.com/docs/INDJCSE11-02-05-167.pdf [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.