Open Access
Issue |
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
|
|
---|---|---|
Article Number | 03033 | |
Number of page(s) | 7 | |
Section | Processes for Energy and Environment | |
DOI | https://doi.org/10.1051/matecconf/201815603033 | |
Published online | 14 March 2018 |
- A. Boudghene Stambouli and E. Traversa, “Fuel cells, an alternative to standard sources of energy,” Renewable and Sustainable Energy Reviews, vol. 6, pp. 295-304, 2002. [CrossRef] [Google Scholar]
- K. Sopian and W. R. Wan Daud, “Challenges and future developments in proton exchange membrane fuel cells,” Renewable Energy, vol. 31, pp. 719-727, 2006. [CrossRef] [Google Scholar]
- L.-j. Yu, et al., “Transport mechanisms and performance simulations of a PEM fuel cell with interdigitated flow field,” Renewable Energy, vol. 34, pp. 530-543, 2009. [CrossRef] [Google Scholar]
- J. H. Lee and T. R. Lalk, “Modeling fuel cell stack systems,” Journal of Power Sources, vol. 73, pp. 229-241, 1998. [CrossRef] [Google Scholar]
- C.-H. Chen, et al., “Flow distribution in the manifold of PEM fuel cell stack,” Journal of Power Sources, vol. 173, pp. 249-263, 2007. [CrossRef] [Google Scholar]
- W. Bi, et al., “The effect of humidity and oxygen partial pressure on degradation of Pt/C catalyst in PEM fuel cell,” Electrochimica Acta, vol. 54, pp. 1826-1833, 2009. [CrossRef] [Google Scholar]
- S. K. Kamarudin, et al., “Design of a fuel processor unit for PEM fuel cell via shortcut design method,” Chemical Engineering Journal, vol. 104, pp. 7-17, 2004. [CrossRef] [Google Scholar]
- M. G. Santarelli and M. F. Torchio, “Experimental analysis of the effects of the operating variables on the performance of a single PEMFC,” Energy Conversion and Management, vol. 48, pp. 40-51, 2007. [CrossRef] [Google Scholar]
- N. Rajalakshmi, et al., “Design and development of modular fuel cell stacks for various applications,” International Journal of Hydrogen Energy, vol. 33, pp. 449-454, 2008. [CrossRef] [Google Scholar]
- C. A. Frangopoulos and L. G. Nakos, “Development of a model for thermoeconomic design and operation optimization of a PEM fuel cell system,” Energy, vol. 31, pp. 1501-1519, 2006. [CrossRef] [Google Scholar]
- A. D. Le and B. Zhou, “A general model of proton exchange membrane fuel cell,” Journal of Power Sources, vol. 182, pp. 197-222, 2008. [CrossRef] [Google Scholar]
- J. Wu, et al., “A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies,” Journal of Power Sources, vol. 184, pp. 104-119, 2008. [CrossRef] [Google Scholar]
- J. Liu and M. Eikerling, “Model of cathode catalyst layers for polymer electrolyte fuel cells: The role of porous structure and water accumulation,” Electrochimica Acta, vol. 53, pp. 4435-4446, 2008. [CrossRef] [Google Scholar]
- S. Shimpalee, et al., “Analysis of GDL flooding effects on PEMFC performance,” Electrochimica Acta, vol. 52, pp. 6748-6754, 2007. [CrossRef] [Google Scholar]
- W.-M. Yan, et al., “Effects of operating conditions on cell performance of PEM fuel cells with conventional or interdigitated flow field,” Journal of Power Sources, vol. 162, pp. 1157-1164, 2006. [CrossRef] [Google Scholar]
- Mulyazmi, et al., “Water balance for the design of a PEM fuel cell system,” International Journal of Hydrogen Energy, vol. 38, pp. 9409-9420, 2013. [CrossRef] [Google Scholar]
- N. S. M. Hassan, et al., “Water management in a single cell proton exchange membrane fuel cells with a serpentine flow field,” Journal of Power Sources, vol. 193, pp. 249-257, 2009. [CrossRef] [Google Scholar]
- J. Zhang, et al., “PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures,” Electrochimica Acta, vol. 53, pp. 5315-5321, 2008. [CrossRef] [Google Scholar]
- B. Zhou, et al., “Water and pressure effects on a single PEM fuel cell,” Journal of Power Sources, vol. 155, pp. 190-202, 2006. [CrossRef] [Google Scholar]
- Y. Zong, et al., “Water and thermal management in a single PEM fuel cell with non-uniform stack temperature,” Journal of Power Sources, vol. 161, pp. 143-159, 2006. [CrossRef] [Google Scholar]
- X. Yu, et al., “Water and thermal management for Ballard PEM fuel cell stack,” Journal of Power Sources, vol. 147, pp. 184-195, 2005. [CrossRef] [Google Scholar]
- F. Gao, et al., “Proton exchange membrane fuel cell multi-physical dynamics and stack spatial non-homogeneity analyses,” Journal of Power Sources, vol. 195, pp. 7609-7626, 2010. [CrossRef] [Google Scholar]
- K. Chu, et al., “A lumped parameter model of the polymer electrolyte fuel cell,” Journal of Power Sources, vol. 171, pp. 412-423, 2007. [CrossRef] [Google Scholar]
- S. A. J. Erahim Afshari, “Heat and Water Management in a PEM Fuel Cell,” Wseas Tctions on Flui Mechanic, vol. 3, p. 6, 1998. [Google Scholar]
- A. J. del Real, et al., “Development and experimental validation of a PEM fuel cell dynamic model,” Journal of Power Sources, vol. 173, pp. 310-324, 2007. [CrossRef] [Google Scholar]
- S. O. Mert, et al., “Performance investigation of a transportation PEM fuel cell system,” International Journal of Hydrogen Energy, vol. 37, pp. 623-633, 2012. [CrossRef] [Google Scholar]
- Y.-S. Chen and H. Peng, “A segmented model for studying water transport in a PEMFC,” Journal of Power Sources, vol. 185, pp. 1179-1192, 2008. [CrossRef] [Google Scholar]
- L. Placca, et al., “Effects of temperature uncertainty on the performance of a degrading PEM fuel cell model,” Journal of Power Sources, vol. 194, pp. 313-327, 2009. [CrossRef] [Google Scholar]
- H. Shaker, “Analytical modeling of PEM fuel cell i-V curve,” Renewable Energy, vol. 36, pp. 451-458, 2011. [Google Scholar]
- T. Thampan, et al., “PEM fuel cell as a membrane reactor,” Catalysis Today, vol. 67, pp. 15-32, 2001. [CrossRef] [Google Scholar]
- D. Song, et al., “Numerical optimization study of the catalyst layer of PEM fuel cell cathode,” Journal of Power Sources, vol. 126, pp. 104-111, 2004. [CrossRef] [Google Scholar]
- Y. Shan and S.-Y. Choe, “A high dynamic PEM fuel cell model with temperature effects,” Journal of Power Sources, vol. 145, pp. 30-39, 2005. [CrossRef] [Google Scholar]
- B. A. P. Wei Suna, Kunal Karana, “An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters ” Electrochemica Acta, vol. 50, p. 16, 2005. [Google Scholar]
- D. Song, et al., “A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells,” Electrochimica Acta, vol. 50, pp. 3347-3358, 2005. [CrossRef] [Google Scholar]
- G. Inoue, et al., “Evaluation of the optimal separator shape with reaction and flow analysis of polymer electrolyte fuel cell,” Journal of Power Sources, vol. 154, pp. 18-34, 2006. [CrossRef] [Google Scholar]
- H. Gorgun, et al., “An algorithm for estimation of membrane water content in PEM fuel cells,” Journal of Power Sources, vol. 157, pp. 389-394, 2006. [CrossRef] [Google Scholar]
- C. Kunusch, et al., “Characterization and experimental results in PEM fuel cell electrical behaviour,” International Journal of Hydrogen Energy, vol. 35, pp. 5876-5881, 2010. [CrossRef] [Google Scholar]
- R. F. Mann, et al., “Application of Butler-Volmer equations in the modelling of activation polarization for PEM fuel cells,” Journal of Power Sources, vol. 161, pp. 775-781, 2006. [CrossRef] [Google Scholar]
- K. Scott and M. Mamlouk, “A cell voltage equation for an intermediate temperature proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, vol. 34, pp. 9195-9202, 2009. [CrossRef] [Google Scholar]
- B. Abdellah, “Modeling and simulation of proton exchange membrane fuel cell systems,” Journal of Power Sources, vol. 205, pp. 335-339, 2012. [CrossRef] [Google Scholar]
- X. Zhang, et al., “The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching,” Energy, vol. 35, pp. 5294-5299, 2010. [CrossRef] [Google Scholar]
- C. Spiegel, “PEM Fuel Cell Modeling and Simulation Using MATLAB,” Elsevier Inc, 2008. [Google Scholar]
- R. R. B. Tavakoli, “The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane,” Renewable Energy, vol. XXX, p. 13, 2011. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.