Open Access
Issue
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
Article Number 03015
Number of page(s) 8
Section Processes for Energy and Environment
DOI https://doi.org/10.1051/matecconf/201815603015
Published online 14 March 2018
  1. IEA-GHG, Energy technology perspectives 2012, (IEA GHG, 2012) [Google Scholar]
  2. G. T. Rochelle, Science, 325(5948), 1652-1654 (2009) [CrossRef] [PubMed] [Google Scholar]
  3. GCEP, An assessment of carbon capture technology and research opportunities, (Global Climate Energy Project (GCEP) Stanford University, 2005) [Google Scholar]
  4. M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Chem. Eng. Res. Des., 89(9), 1609-1624 (2011) [Google Scholar]
  5. J. Oexmann, A. Kather, Int. J. Greenhouse Gas Control, 4(1), 36-43 (2010) [CrossRef] [Google Scholar]
  6. K. Smith, U. Ghosh, A. Khan, M. Simioni, K. Endo, X. Zhao, S. Kentish, A. Qader, B. Hooper, G. Stevens, Energy Procedia 1(1), 1549-1555 (2009) [CrossRef] [Google Scholar]
  7. M. R. M. Abu-Zahra, L. H. J. Schneiders, J. P. M. Niederer, P. H. M. Feron, G. F. Versteeg, Int. J. Greenhouse Gas Control 1(1), 37-46 (2007) [CrossRef] [Google Scholar]
  8. A. N. M. Peeters, A. P. C. Faaij, W. C. Turkenburg, Int. J. Greenhouse Gas Control 1(4), 396-417 (2007) [CrossRef] [Google Scholar]
  9. M. T. Ho, Techno-economic modelling of CO2 capture systems for Australian industrial sources (PhD Thesis, University of New South Wales, 2007) [Google Scholar]
  10. G. Puxty, R. Rowland, A. Allport, Q. Yang, M. Bown, R. Burns, M. Maeder, M. Attalla, Env. Sci. Tech., 43(16), 6427-6433 (2009) [CrossRef] [PubMed] [Google Scholar]
  11. D. G. Chapel, C. L. Mariz, Recovery of CO2 from flue gases commercial trends (Canadian Society of Chemical Engineers Annual Meeting, Saskatoon, Canada, 1999) [Google Scholar]
  12. A. Kothandaraman, Carbon dioxide capture by chemical absorption: A solvent comparison study (PhD Thesis, MIT, 2010) [Google Scholar]
  13. J. R. Gibbins, R. I. Crane, D. Lambropoulos, C. Booth, C. A. Roberts, M. Lord.Maximising the effectiveness of post combustion CO2 capture systems (7th International Conference on Greenhouse Gas Technologies, Vancouver, Canada, Elsevier Science Ltd., 2004) [Google Scholar]
  14. A. B. Rao, E. S. Rubin, M. B. Berkenpas. An integrated modelling framework for carbon management technologies (Carnegie Mellon University, Center of Energy and Environmental Studies, 2004). [Google Scholar]
  15. P. H. M. Feron, N. A. M. ten Asbroek. New solvents based on amino-acid salts for CO2 capture from flue gases (7th International Conference on Greenhouse Gas Technologies, Vancouver, Canada, Elsevier Science Ltd., 2005) [Google Scholar]
  16. E. B. Rinker, S. S. Ashour, O. C. Sandall, Ind. Eng. Chem. Res. 35(4), 1107-1114 (1996) [CrossRef] [Google Scholar]
  17. R. Cadours, D. Roquet, G. Perdu, Ind. Eng. Chem. Res., 46(1), 233-241 (2007) [CrossRef] [Google Scholar]
  18. J. J. Ko, M. H. Li., Chem. Eng. Sci. 55(19), 4139-4147 (2000) [CrossRef] [Google Scholar]
  19. T. Sema, A. Naami, K. Fu, M. Edali, H. Liu, H. Shi, Z. Liang, R. Idem, P. Tontiwachwuthikul, Chem. Eng. J., 209(0) (2012) [Google Scholar]
  20. F. Closmann, T. Nguyen, G. T. Rochelle, Energy Procedia 1(1), 1351-1357 (2009) [CrossRef] [Google Scholar]
  21. N. J. M. C. Penders-van Elk, E. S. Hamborg, P. J. G. Huttenhuis, S. Fradette, p and G. F. Versteeg, Int. J. Greenhouse Gas Control 12(0), 259-268 (2013) [CrossRef] [Google Scholar]
  22. A. Naami, T. Sema, M. Edali, Z. Liang, R. Idem, P. Tontiwachwuthikul, Int. J. Greenhouse Gas Control 19(0), 3-12 (2013) [CrossRef] [Google Scholar]
  23. T. Mimura, S. Shimojo, T. Suda, M. Iijima, S. Mitsuoka, Energy Convers. Mgmt. 36, 397-400 (1995) [CrossRef] [MathSciNet] [Google Scholar]
  24. T. Mimura, H. Simayoshi, H. Suda, M. Iijima, S. Mitsuoka, Energy Convers. Mgmt., 38, S57-S62 (1997) [CrossRef] [Google Scholar]
  25. T. Kamijo, N. Imai, M. Iijima, T. Takashina, H. Tanaka, Recent technology development of KS-1 CO2 recovery process (2004) [Google Scholar]
  26. M. Iijima, T. Nagayasu, T. Kamijyo, S. Nakatani, Mitsubishi Heavy Industries Technical Review, 48(1), 26-32 (2011) [Google Scholar]
  27. S. A. Freeman, R. Dugas, D. H. Van Wagener, T. Nguyen, G. T. Rochelle, Int. J. Greenhouse Gas Control 4(2), 119-124 (2010) [CrossRef] [Google Scholar]
  28. M. J. Goldman, N. A. Fine, G. T. Rochelle, Env. Sci. Tech., 47(7), 3528-3534 (2013) [CrossRef] [Google Scholar]
  29. M. D. Hilliard, A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas (PhD Thesis, University of Texas, 2008) [Google Scholar]
  30. J. Oexmann, C. Hensel, A. Kather Int. J. Greenhouse Gas Control 2(4), 539-552 (2008) [CrossRef] [Google Scholar]
  31. K. Endo, G. Stevens, B. Hooper, S. Kentish, C. Anderson. A process and plant for removing acid gases (Patent WO 2011130796 A1, 2011) [Google Scholar]
  32. G. Puxty, R. Rowland, M. Attalla, Chem. Eng. Sci. 65(2), 915-922 (2010) [CrossRef] [Google Scholar]
  33. P. Versteeg, E. S. Rubin, Int. J. Greenhouse Gas Control, 5(6), 1596-1605 (2011) [CrossRef] [Google Scholar]
  34. H. Yu, S. Morgan, A. Allport, A. Cottrell, T. Do, J. McGregor, L. Wardhaugh, P. Feron, Chem. Eng. Res. Des. 89(8), 1204-1215 (2011) [CrossRef] [Google Scholar]
  35. Z. Niu, Y. Guo, Q. Zeng, W. Lin, Fuel Process. Tech. 108(0), 154-162 (2013) [CrossRef] [Google Scholar]
  36. M. Hasib-ur-Rahman, M. Siaj, F. Larachi, Chem. Eng. Process., 49(4), 313-322 (2010) [CrossRef] [Google Scholar]
  37. D. Wappel, G. Gronald, R. Kalb, J. Draxler, Int. J. Greenhouse Gas Control 4(3), 486-494 (2010) [CrossRef] [Google Scholar]
  38. M. Ramdin, T. W. de Loos, T. J. H. Vlugt, Ind. Eng. Chem. Res., 51(24), 8149-8177 (2012) [CrossRef] [Google Scholar]
  39. Y. Zhang, Y., P. Yu, Y. Luo, Chem. Eng. J., 214(0), 355-363 (2013) [CrossRef] [Google Scholar]
  40. A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K. Rasheed, J. Am. Chem. Soc., 126(29), 9142-9147 (2004) [CrossRef] [PubMed] [Google Scholar]
  41. Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jerome, Chem. Soc. Rev., 41(21), 7108-7146 (2012) [CrossRef] [PubMed] [Google Scholar]
  42. R. B. Leron, M.H. Li. Thermochimica Acta 551(0), 14-19 (2013) [CrossRef] [Google Scholar]
  43. E. Ali, M. K. Hadj-Kali, S. Mulyono, I. Alnashef, A. Fakeeha, F. Mjalli, A. Hayyan, Chem. Eng. Res. Des., 92(10), 1898-1906 (2014) [CrossRef] [Google Scholar]
  44. E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev., 114(21), 11060-11082 (2014) [CrossRef] [Google Scholar]
  45. J. P. Brouwer, P. H. M. Feron, N. A. M. ten Asbroek, Amino-acid salts for CO2 capture from flue gases (TNO Science … Industry, 2005) [Google Scholar]
  46. D. Sutter, M. Gazzani, M. Mazzotti, Chem. Eng. Sci., 133, 170-180 (2015) [CrossRef] [Google Scholar]
  47. E. Sanchez-Fernandez, E. L. V. Goetheer, Energy Procedia, 4(0), 868-875 (2011) [CrossRef] [Google Scholar]
  48. A. Raksajati, M. T. Ho, D. E. Wiley, Ind. Eng. Chem. Res., 55(7), 1980-1994 (2016) [CrossRef] [Google Scholar]
  49. E. Sanchez-Fernandez, E., K. Heffernan, L. V. van der Ham, M. J. G. Linders, E. Eggink, F. N. H. Schrama, D. W. F. Brilman, E. L. V. Goetheer, T. J. H. Vlugt, Ind. Eng. Chem. Res., 52(34), 12223-12235 (2013) [CrossRef] [Google Scholar]
  50. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, G. F. Versteeg, Ind. Eng. Chem. Res., 42(12), 2832-2840 (2003) [CrossRef] [Google Scholar]
  51. P. S. Kumar, J. A. Hogendoorn, S. J. Timmer, P. H. M. Feron, G. F. Versteeg, Ind. Eng. Chem. Res. 42(12), 2841-2852 (2003) [CrossRef] [Google Scholar]
  52. A. F. Portugal, J. M. Sousa, F. D. Magalhaes, A. Mendes, Chem. Eng. Sci., 64(9), 1993-2002 (2009) [CrossRef] [Google Scholar]
  53. S. Ma’mun, I. Kim, Energy Procedia 37(0), 331-339 (2013) [CrossRef] [Google Scholar]
  54. C. C. Wei, G. Puxty, P. Feron, Chem. Eng. Sci. 107(0), 218-226 (2014) [CrossRef] [Google Scholar]
  55. K. A. Mumford, K. H. Smith, C. J. Anderson, S. Shen, W. Tao, Y. A. Suryaputradinata, A. Qader, B. Hooper, R. A. Innocenzi, S. E. Kentish, G. W. Stevens, Energy … Fuels 26(1), 138-146 (2012) [CrossRef] [Google Scholar]
  56. K. Smith, G. Xiao, K. Mumford, J. Gouw, I. Indrawan, N. Thanumurthy, D. Quyn, R. Cuthbertson, A. Rayer, N. Nicholas, A. Lee, G. da Silva, S. Kentish, T. Harkin, A. Qader, C. Anderson, B. Hooper, G. Stevens, Energy … Fuels, 28(1), 299-306 (2014) [CrossRef] [Google Scholar]
  57. F. Kozak, A. Petig, E. Morris, R. Rhudy, D. Thimsen, Energy Procedia, 1(1), 1419-1426 (2009) [CrossRef] [Google Scholar]
  58. NETL, Chilled Ammonia-based wet scrubbing for post-combustion CO2 capture (DOE USA, 2007) [Google Scholar]
  59. P. M. Mathias, S. Reddy, J. P. O’Connell, Int. J. Greenhouse Gas Control 4(2), 174-179 (2010) [CrossRef] [Google Scholar]
  60. G. Valenti, D. Bonalumi, E. Macchi, Fuel 101(0), 74-83 (2012) [CrossRef] [Google Scholar]
  61. Q. Zeng, Y. Guo, Z. Niu, W. Lin, Fuel Process. Tech. (0) (2013) [Google Scholar]
  62. R. D. Aines, W. L. Bourcier, C. M. Spadaccini, J. K. Stolaroff, Polymer-encapsulated carbon capture: Liquids that tolerate precipitation of solids for increased capacity (WO 2013/063501 A2, 2013) [Google Scholar]
  63. R. D. Aines, C. M. Spaddaccini, E. B. Duoss, J. K. Stolaroff, J. Vericella, J. A. Lewis, G. Farthing, Energy Procedia 37(0), 219-224 (2013) [CrossRef] [Google Scholar]
  64. J. K. Stolaroff, W. L. Bourcier, Energy Procedia 63(0), 2331-2335 (2014) [CrossRef] [Google Scholar]
  65. J. J. Vericella, S. E. Baker, J. K. Stolaroff, E. B. Duoss, J. O. Hardin Iv, J. Lewicki, E. Glogowski, W. C. Floyd, C. A. Valdez, W. L. Smith, J. H. Satcher Jr, W. L. Bourcier, C. M. Spadaccini, J. A. Lewis, R. D. Aines, Nat Commun 6 (2015) [CrossRef] [Google Scholar]
  66. R. P. Lively, R. R. Chance, W. J. Koros, Ind. Eng. Chem. Res. 49(16), 7550-7562 (2010) [CrossRef] [Google Scholar]
  67. G. D. Pirngruber, F. Guillou, A. Gomez, M. Clausse, Int. J. Greenhouse Gas Control 14(0), 74-83 (2013) [CrossRef] [Google Scholar]
  68. H. Liu, B. Liu, L.-C. Lin, G. Chen, Y. Wu, J. Wang, X. Gao, Y. Lv, Y. Pan, X. Zhang, X. Zhang, L. Yang, C. Sun, B. Smith, W. Wang, Nat Commun 5 (2014) [Google Scholar]
  69. H. Krutka, S. Sjostrom, Evaluation of solid sorbents as a retrofit technology for CO2 capture from coal-fired power plants (ADA Environmental Solutions 2011) [CrossRef] [Google Scholar]
  70. A. Raksajati, M. T. Ho, D. E. Wiley, Ind. Eng. Chem. Res. 52(47), 16887-16901 (2013) [CrossRef] [Google Scholar]
  71. D. Shaw (2014), Cansolv at Boundary Dam-Integrated SO2 and CO2 capture for SaskPower. Platts (8th Annual European CCS, 2013) [Google Scholar]
  72. A. Raksajati, M. T. Ho, D. E. Wiley, Energy Procedia 63, 2280-2288 (2014) [CrossRef] [Google Scholar]
  73. Siemens, CO2 capture utilization and sequestration (CCUS) with Siemens’s PostCap TM Technology [Google Scholar]
  74. A. Raksajati, M. T. Ho, D. E. Wiley, Ind. Eng. Chem. Res., 56(6), 1604-1620 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.