Open Access
Issue
MATEC Web Conf.
Volume 154, 2018
The 2nd International Conference on Engineering and Technology for Sustainable Development (ICET4SD 2017)
Article Number 01092
Number of page(s) 6
Section Engineering and Technology
DOI https://doi.org/10.1051/matecconf/201815401092
Published online 28 February 2018
  1. B. Abbasi, S.Z. Hosseinifard, A., On the Issuing Policies for Perishable Items such as Red Blood Cells and Platelets in Blood Service, Decision Sciences 45, 995-1020 (2014) [CrossRef] [Google Scholar]
  2. E. Alfonso, X. Xie, V. Augusto, O. Garraud, Modeling and simulation of blood collection systems, Health Care Management Science 15, 63-78 (2012) [CrossRef] [Google Scholar]
  3. E. Alfonso, X. Xie, V. Augusto, P. Garraud, Modeling and simulation of blood collection systems: Improvement of human resources allocation for better cost-effectiveness and reduction of candidate donor abandonment, Vox Sanguinis 104, 225-233 (2013) [CrossRef] [Google Scholar]
  4. R.K. Bëdi, K. Mittal, T. Sood, P. Kaur, G. Kaur, Segregation of blood inventory: A key driver for optimum blood stock management in a resource. poor setting (2016) [Google Scholar]
  5. J. Belien, H. Force, Supply chain management of blood products: A literature review, Eur J of Opr Research 217, 1-16 (2012) [CrossRef] [Google Scholar]
  6. J. Blake, M. Hardy,Using simulation to evaluate a blood supply network in the Canadian maritime provinces, J of Enterprise Infor Manag 26, 119-134 (2013) [CrossRef] [Google Scholar]
  7. J. Blake, M. Hardy,Using simulation to evaluate a blood supply network in the Canadian maritime provinces (2013) [Google Scholar]
  8. J.T. Blake, M. Hardy, A generic modeling framework to evaluate network blood management policies: The Canadian Blood Services experience, Opr Research for Health Care 3, 116-128 (2014) [CrossRef] [Google Scholar]
  9. J.F. Chapman, C. Hyam, R. Hick, Blood inventory management, Vox Sanguinis 2, 143-145 (2004) [CrossRef] [Google Scholar]
  10. I. Civilex, I. Karaesmen, A. Scheller-Wolf, Blood platelet inventory management with protection levels, Eur J of Opr Research 243, 826-838 (2015) [CrossRef] [Google Scholar]
  11. M.A. Cohen, W.P. Pierskalla, R.J. Sassetti, J. Consolo, An overview of a hierarchy of planning models for Regional Blood Bank Management, Transfusion 19, 526-534 (1979) [CrossRef] [Google Scholar]
  12. A. Coleman, O.S. Akinsola, Effective blood distribution in rural hospitals through ICT service-oriented architecture (SOA) framework: A case study in rural hospitals in South Africa, In Studies on Ethno-Medicine 6, 141-147 (2012) [CrossRef] [Google Scholar]
  13. P.D. Cumming, K.E. Kendall, C.C. Pegels, J.P. Seagle, The impact of an information system on a regional blood service, Information and Management 3, 63-72 (1980) [CrossRef] [Google Scholar]
  14. D. Delen, M. Erraguntla, R.J. Mayer, C.N. Wu, Better management of blood supply-chain with GIS-based analytics, Annals of Opr Research 185, 181-193 (2011) [CrossRef] [Google Scholar]
  15. N.V. Dijk, J.V.D. Wal, C. Smith, Blood platelet production with breaks: optimization by SDP and simulation, 121, 464-473 (2009) [Google Scholar]
  16. M. Dillon, F. Oliveira, B. Abbasi, A two-stage stochastic programming model for inventory management in the blood supply chain A Two-Stage Stochastic Programming Model for Inventory Management in the Blood Supply Chain, J of Production Economics 187, 27-41 (2017) [CrossRef] [Google Scholar]
  17. G. Dobson, E.J. Pinker, O. Yildiz, An EOQ model for perishable goods with age-dependent demand rate, Eur J of Opr Research 0, 1-5 (2016) [Google Scholar]
  18. Q. Duan, T.W. Liao, A new age-based replenishment policy for supply chain inventory optimization of highly perishable products. Int J of Prod Economics 145, 658-671 (2013) [CrossRef] [Google Scholar]
  19. Q. Duan, T.W. Liao, Optimization of blood supply chain with shortened shelf lives and ABO compatibility, In Int J of Prod Economics 153, 113-129 (2014) [CrossRef] [Google Scholar]
  20. H. Ensafian, S. Yaghoubi, A robust optimization model for integrated procurement, production, and distribution in platelet supply chain, Transportation Research Part E 103, 32-55 (2017) [CrossRef] [Google Scholar]
  21. B. Fahimnia, A. Jabbarzadeh, A. Ghavamifar, M. Bell, Supply chain design for efficient and effective blood supply in disasters, In Int J of Prod Economics 1-10 (2015) [Google Scholar]
  22. O.S.S. Filho, M.A. Carvalho, W. Cezarino, R. Silva, G. Salviano, Demand Forecasting for Blood Components Distribution of a Blood Supply Chain, In IFAC Proceedings Volumes 46, 565-571 (2013) [CrossRef] [Google Scholar]
  23. O.S.S. Filho, W. Cezarino, G.R. Salviano, A decision-making tool for demand forecasting of blood components, In IFAC Proceedings Volumes 14, 1499-1504 (2012) [CrossRef] [Google Scholar]
  24. S.M. Fortsch, E.A. Khapalova, Reducing uncertainty in demand for blood, In Opr Research for Health Care 9, 16-28 (2016) [CrossRef] [Google Scholar]
  25. B.A. Friedman, R.D. Abbot, G.W. Williams, A blood ordering strategy for hospital blood banks derived from a computer simulation, American J of Clinical Pathology 78, 154-160 (2008) [CrossRef] [Google Scholar]
  26. M.J. Galloway, G. Jane, L. Sudlow, J. Trattles, J. Watson, A tabletop exercise to assess a hospital emergency blood management contingency plan in a simulated acute blood shortage, Transfusion Medicine 18, 302-307 (2008) [CrossRef] [Google Scholar]
  27. P. Ghandforoush, T.K. Sen, A DSS to manage the platelet production supply chain for regional blood centers, In Decision Support Systems 50, 32-42 (2010) [CrossRef] [Google Scholar]
  28. A. Grasas, A. Pereira, M. Bosch, P. Ortiz, L. Puig, Feasibility of reducing the maximum shelf life of red blood cells stored in additive solution: a dynamic simulation study involving a large regional blood system, 233-242 (2015) [Google Scholar]
  29. S. Gunpinar, Supply Chain Optimization of Blood Products, In A Dissertation, Departement of Industrial and Management System Engineering, University of South Florida (2013) [Google Scholar]
  30. V. Hemmelmayr, K.F. Doerner, R.F. Hartl, M.W.P. Savelsbergh, Delivery strategies for blood products supplies, OR Spectrum 31, 707-725 (2009) [CrossRef] [Google Scholar]
  31. S.M. Hesse, C.R. Coullard, M.S. Daskin, A.P. Hurter, A case study in platelet inventory management, Proceedings of the 6th Ind Engineering Research Conf, 801-806 (1997) [Google Scholar]
  32. Z. Hosseeinifard, B. Abbasi, The inventory centralization impacts on the sustainability of the blood supply chain, Elsevier, 1-7 (2016) [Google Scholar]
  33. K. Katsaliaki, Cost-effective practices in the blood service sector, 86, 276-287 (2015) [Google Scholar]
  34. K. Katsaliaki, S.C. Brailsford, Using simulation to improve the blood supply chain, J of the Opr Research Society 58, 219-227 (2007) [CrossRef] [Google Scholar]
  35. K.E. Kendall, A Decentralized Information Blood Management and Control System for, In the J of System and Software 1, 299-306 (1980) [CrossRef] [Google Scholar]
  36. K.E. Kendall, S.M. Lee, Formulating Blood Rotation Policies with Multiple Objectives, Manag Science 26, 1145-1157 (1980) [CrossRef] [Google Scholar]
  37. R. Kopach, B. Balcioglu, M. Carter, Tutorial on constructing a red blood cell inventory management system with two demand rates, In Eur J of Opr Research 185, 1051-1059 (2008) [CrossRef] [Google Scholar]
  38. R.H. Mole, Inventory Control in Hospital, 3, 461-473 (1975) [Google Scholar]
  39. S. Nahmias, Perishable inventory theory: a review, Opr Research 30, 680-708 (1982) [CrossRef] [PubMed] [Google Scholar]
  40. A.F. Osorio, S.C. Brailsford, H.K. Smith, A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making, Int J of Prod Research 1, 1-22 (2015) [Google Scholar]
  41. G. Perera, C. Hyam, C. Taylor, J.F. Chapman, Hospital Blood Inventory Practice: The factors affecting stock level and wastage, Transfusion Medicine 19, 99-104 (2009) [CrossRef] [Google Scholar]
  42. C. Pitocco, T.R. Sexton, Alleviating blood shortages in a resource-constrained environment, Transfusion 45, 1118-1126 (2005) [CrossRef] [Google Scholar]
  43. G.P. Prastacos, Blood inventory management: an overview of theory and practice, Manag Science (1984) [Google Scholar]
  44. G.P. Prastacos, E. Brodheim, Computer-based regional blood distribution, Computers and Opr Research 6, 69-77 (1979) [CrossRef] [Google Scholar]
  45. K. Puranam, D.C. Novak, M.T. Lucas, M. Fung, Managing Blood Inventory with Multiple Independent Sources of Supply, In Eur J of Opr Research (2016) [Google Scholar]
  46. K. Puranam, D.C. Novak, M.T. Lucas, M. Fung, Managing blood inventory with multiple independent sources of supply, In Eur J of Opr Research 259, 500-511 (2016) [CrossRef] [Google Scholar]
  47. J. Rautonen, J. MacPherson, Redesigning supply chain management together with the hospitals, Transfusion 47, 197-200 (2007) [CrossRef] [Google Scholar]
  48. E. Reynolds, C. Wickenden, A. Oliver, The impact of improved safety on maintaining a sufficient blood supply, Transfusion Clinique et Biologique 8, 235-239 (2001) [CrossRef] [Google Scholar]
  49. J.S. Rytila, K.M. Spens, Using simulation to increase efficiency in blood supply chains, Manag Research News 29, 801-819 (2006) [CrossRef] [Google Scholar]
  50. G. Sahin, H. Sural, S. Meral, Locational analysis for regionalization of Turkish Red Crescent blood services, Comp and Opr Research 34, 692-704 (2007) [CrossRef] [Google Scholar]
  51. W.M. Smid, R. Buining, W.D. Kort, Blood supply management: experience and recommendations from the Netherlands, 50-53 (2013) [Google Scholar]
  52. K.M. Spens, Using simulation to increase efficiency in blood supply chains (2013) [Google Scholar]
  53. S.H.W. Stanger, Vendor managed inventory in the blood supply chain in Germany Evidence from multiple case studies, (2013) [Google Scholar]
  54. S.H.W. Stanger, R. Wilding, N. Yates, S. Cotton, What drives perishable inventory management performance? Lessons learned from the UK blood supply chain, (2012) [Google Scholar]
  55. S.H.W. Stanger, N. Yates, R. Wilding, S. Cotton, Blood Inventory Management: Hospital Best Practice, In Transfusion Medicine Reviews 26, 153-163 (2012) [CrossRef] [Google Scholar]
  56. R.W. Toner, L. Pizzi, B. Leas, S.K. Ballas, A. Quigley, N.I. Goldfarb, Costs to hospitals of acquiring and processing blood in the US: A survey of hospital-based blood banks and transfusion services, Applied Health Economics and Health Policy 9, 29-37 (2011) [CrossRef] [Google Scholar]
  57. L.M. Williamson, D.V. Devine, Challenges in the management of the blood supply, In the Lancet 381, 1866-1875 (2013) [CrossRef] [Google Scholar]
  58. E. Yuzgec, Y. Han, N. Nagarur, A simulation model for blood supply chain systems, In IIE Annual Conference and Expo, 1703-1711 (2013) [Google Scholar]
  59. S.M. Zahraee, J.M. Rohani, A. Firouzi, A. Shahpanah, Efficiency Improvement of Blood Supply Chain System Using Taguchi Method and Dynamic Simulation, Procedia Manufacturing 2, 1-5 (2015) [CrossRef] [Google Scholar]
  60. E.D. Zepeda, G.N. Nyaga, G.J. Young, Supply chain risk management and hospital inventory: Effects of system affiliation, In J of Opr Manag 44, 30-47 (2016) [CrossRef] [Google Scholar]
  61. K.M. Wang, Z.J. Ma Age-based policy for blood transshipment during blood shortage, Transportation Research Part E 80, 166–183, (2015) [CrossRef] [Google Scholar]
  62. A.W. Suwardie, B.M.Sopha, M.K. Herliansyah, A Simulation Model of Blood Supply Chain at Indonesian Regional Red-Cross, Proceedings of The 2013 International Conference on Logistics and Maritime Systems (2013). [Google Scholar]
  63. I. Vanany, A. Maryani, B. Amaliah, F. Rinaldy, F. Muhammad, Blood traceability system for Indonesian blood supply chain, Procedia Manufacturing 4, 535 – 542, (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.