Open Access
Issue
MATEC Web Conf.
Volume 154, 2018
The 2nd International Conference on Engineering and Technology for Sustainable Development (ICET4SD 2017)
Article Number 01041
Number of page(s) 6
Section Engineering and Technology
DOI https://doi.org/10.1051/matecconf/201815401041
Published online 28 February 2018
  1. Abidin, S.R., Salamah, U., Nugroho, A.S., Segmentation of Malaria Parasite Candidates from Thick Blood Smear Microphotographs Image Using Active Contour Without Edge. 1st International Conference on Biomedical Engineering (2016). [Google Scholar]
  2. Agaian, S., Madhukar, M., Chronopoulos, A.T., Automated Screening System for AcuteMyelogenous Leukemia Detection in Blood Microscopic Images. IEEE System Journal, Vol. 8, No. 3. (2014). [Google Scholar]
  3. American Cancer Society, Cancer Facts & Figures 2014. Atlanta. (2014). [Google Scholar]
  4. Bell, A. dan Sallah, S., The Morphology of Human Blood Cells. Seventh Edition. Abbott, A Promise for Live. (2005). [Google Scholar]
  5. Chan, T. F., dan Vese, L. A., Active Contour Without Edges. IEEE Transactions on Image Processing, 10(2), 266-277. (2001). [Google Scholar]
  6. Dacie, Lewis, Practical Haematology: Eleventh Edition. Elsevier Churcill Livingstone. ISBN-13: 9780702034084. (2011). [Google Scholar]
  7. Gonzales, R.C., Woods, R.E. Digital Image Processing: Second Edition. New Jersey : Pearson Prentice Hall. Upper Saddle River, 07458. (2002). [Google Scholar]
  8. Hamid, A.G., Classification of Acute Leukemia, Acute Leukemia: The Scientist's Perspective and Challenge. Prof. Mariastefania Antica (Ed.), ISBN: 978-953-307-553-2. (2011). [Google Scholar]
  9. Kasmin F., Prabuwono, A.S., Abdullah A., Detection of Leukemia in Human Blood Sample Based on Microscopic Images: a Study. Journal of Theoretical and Applied Information Technology. Vol.46 Num.2. ISSN: 1992-8645. (2012). [Google Scholar]
  10. Kjeldsberg, C.R., Practical Diagnosis of Hematologic Disorders: Second Edition. Chicago Illinois: American Society of Clinical Pathologists (ASCP Press). ISBN : 0891894012. (1995). [Google Scholar]
  11. Kusumadewi, S., Membangun Jaringan Syaraf Tiruan Menggunakan MATLAB & EXCEL LINK. Yogyakarta: Graha Ilmu. (2004). [Google Scholar]
  12. Losen Adnyana, I. W. Dan Suega, K., Perubahan Golongan Darah Pada Penderita Leukemia Mieloblastik Akut. J Peny Dalam, Vol. 12 No.1 (2011). [Google Scholar]
  13. Leukemia & Lymphoma Society. The AML Guide Information for Patients and Caregivers Acute Myeloid Leukemia. 1311 Mamaroneck Avenue, Suite 310, White Plains, NY 10605. (2012). [Google Scholar]
  14. Madhukar, M., Agaian, S., and Chronopoulos, A.T., New Decision Support Tool for Acute Lymphoblastic Leukemia Classification. Journal of SPIE-IS&T/ Vol. 8295 8295181. (2012). [Google Scholar]
  15. Mishra, A. K., Fieguth, P. W., & Clausi, D. A. Decoupled Active Contour (DAC) for Boundary Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 310-324. (2011). [CrossRef] [Google Scholar]
  16. Nasir, A.A.1, Mashor, M.Y.1, and Hassan, R.2 Classification of Acute Leukaemia Cells using Multilayer Perceptron and Simplified Fuzzy ARTMAP Neural Networks. 1Electronic and Biomedical Intelligent Systems Research Group, Universiti Malaysia Perlis, Malaysia. 2Department of Haematology, Universiti Sains Malaysia, Malaysia. (2013). [Google Scholar]
  17. Patil T.G., Prof. Mr. V. B. Raskar, Automated Leukemia Detection By Using Contour Signature Method. E & TC Department JSPM’s, Imperial College of Engineering & Research Wagholi, Pune. The International Arab Journal of Information Technology, Vol. 10, No. 4, (2015). [Google Scholar]
  18. Pradana, T.P.N., Suryani, E., Wiharto, Pemanfaatan Seed Region Growing Segmentation dan Momentum Backpropagation Neural Network Untuk Klasifikasi Jenis Sel Darah Putih. Seminar Nasional Teknoin 2013 FTI UII. (2013). [Google Scholar]
  19. Prasetyo, Eko, Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlab. Yogyakarta: Penerbit Andi. ISBN:978-979-270-0. (2011). [Google Scholar]
  20. Putzu, L., Ruberto C.D., White Blood Cells Identification and Counting from Microscopic Blood Image. World Academy of Science, Engineering and Technology. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering Vol.7, No.1. (2013). [Google Scholar]
  21. Suryani, E., Wiharto, and Polvonov, N., Identifikasi Penyakit Acute Lymphoblastic Leukemia (ALL) Menggunakan Fuzzy Rule Based System Berdasarkan Morfologi Sel Darah Putih. Prosiding Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK), Semarang, Udinus, ISBN :979-26-0266-6. (2013). [Google Scholar]
  22. Suryani, E., Salamah, U., Wiharto., Polvonov, N., Identification and Counting White Blood Study of Leukemia. International journal of Computer Science & Network Solutions. Vol. 2 No. 6. ISSN: 2345-3397. (2014a). [Google Scholar]
  23. Suryani, E., Salamah, U., Wiharto., Wijaya., A.A., Identifikasi Penyakit Acute Myeloid Leukemia (AML) Menggunakan ‘Fuzzy Rule Based System’ Berdasarkan Morfologi Sel Darah Putih Studi Kasus : AML M2 dan AML M4. Seminar Nasional Semantik UDINUS Semarang. (2014b). [Google Scholar]
  24. Suryani, E., Wiharto, Palgunadi, S., Pradana T.P.N., Classification of Acute Myelogenous Leukemia (AML M2 and AML M3) using Momentum Backpropagation from Watershed Distance Transform Segmented Images. International Conference on Computing and Applied Informatics. IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012044. doi:10.1088/1742-6596/801/1/012044. (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.