Open Access
MATEC Web Conf.
Volume 153, 2018
The 4th International Conference on Mechatronics and Mechanical Engineering (ICMME 2017)
Article Number 02004
Number of page(s) 5
Section Robot Design and Development Technology
Published online 26 February 2018
  1. Krzysztof Arent, Mateusz Cholewiński, Łukasz Chojnacki, Wojciech Domski, Micha łDrwięga, Janusz Jakubiak, Mariusz Janiak, Bogdan Kreczmer, Adam Kurnicki, Bartłomiej Stańczyk, D. S.-S. Selected Topics in Design And Application of a Robot For Remote medical Examination With use Of Ultrasonography And Auscultation from The Perspective of The Remedi Project. Journal of Automation, Mobile Robotics & Intelligent Systems, VOLUME11(N° 2). (2017). [Google Scholar]
  2. Z. Nawrat. Postępy robotyki. Przemysłowe i medyczne systemy robotyczne, chapter Polski robot kardiochirurgiczny, 275-284. Wydawnictwa Komunikacji i Łączności, (2005). [Google Scholar]
  3. “The da Vinci Surgical System, the manufacturer website”. http://www.intuitivesurgical. [Google Scholar]
  4. M. Iftikhar, M. J. Majid, M. Muralindran, G. Thayabaren, R. Vigneswaran, and T. T. K. Brendan, “Otorob: Robot for orthopaedic surgeon roboscope: Non-interventional medical robot for telerounding”. In: Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering, 1 - 5. (2011). [Google Scholar]
  5. S. Balasubramanian, J. Klein, and E. Burdet. Robot-assisted rehabilitation of hand function. Curr Opin Neurol, (2010). [Google Scholar]
  6. T. Nef, M. Mihelj, and R. Riener, “Armin: a robot for patient-cooperative arm therapy”, Medical and Biological Engineering and Computing, vol. 45, 887-900. (2007). [CrossRef] [Google Scholar]
  7. M. Kaczmarski and G. Granosik, “Rehabilitation robot rrh1”, The Archive of mechanical Engineering, vol. 58, no. 1, (2011). [CrossRef] [Google Scholar]
  8. M. Mariappan, T. Ganesan, V. Ramu, and M. Iftikhar. Intelligent Robotics and Applications, chapter Safety System and Navigation for Orthopaedic Robot (OTOROB), 358 - 367. Springer, (2011). [Google Scholar]
  9. T. Mukai, S. Hirano, H. Nakashima, Y. Kato, Y. Sakaida, S. Guo, and S. Hosoe, “Development of a nursing-care assistant robot riba that can lift a human in its arms”. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (2010). [Google Scholar]
  10. C. Urdiales, M. Fernandez-Carmona, J. M. Peula, R. Annicchiaricco, F. Sandoval, & C. Caltagirone. Problemy robotyki, chapter A collaborative control scheme for haptics-based blind wheelchair driving. Oficyna Wydawnicza Politechniki Warszawskiej, (2010). [Google Scholar]
  11. J. T. Belter, J. L. Segil, A. M. Dollar, and R. F. Weir, “Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review”, Journal of Rehabilitation Research & Development, vol. 50, no. 5, 599–618. (2013). [CrossRef] [Google Scholar]
  12. Panzirsch, M., Weber, B., Rubio, L., Coloma, S., Ferre, M., & Artigas, J. Tele-healthcare with humanoid robots: A user study on the evaluation of force feedback effects. 2017 IEEE World Haptics Conference (WHC), (June), 245–250. (2017). [CrossRef] [Google Scholar]
  13. K. Doelling, J. Shin, and D. O. Popa, “Service robotics for the home: a state of the art review,”in Int. Conf. on Pervasive Technologies Related to Assistive Environments. ACM, p. 35. (2014). [Google Scholar]
  14. T. L. Chen, C.-H. A. King, A. L. Thomaz, and C. C. Kemp, “An investigation of responses to robot-initiated touch in a nursing context, ” Int. Journal of Social Robotics, vol. 6, no. 1, pp. 141–161, (2014). [CrossRef] [Google Scholar]
  15. Barrett Medical, “Proficio,”, accessed: 2016-02-19. [Google Scholar]
  16. J. Hu, A. Edsinger, Y.-J. Lim, N. Donaldson, M. Solano, A. Solochek, and R. Marchessault, “An advanced medical robotic system augmenting healthcare capabilities-robotic nursing assistant,” in Int. Conf. on Robotics and Automation. IEEE, pp. 6264–6269. (2011). [CrossRef] [Google Scholar]
  17. A. I. Chen, M. L. Balter, T. J. Maguire, and M. L. Yarmush, “Realtime needle steering in response to rolling vein deformation by a 9dof image-guided autonomous venipuncture robot,” in Int. Conf. on Intelligent Robots and Systems. IEEE, pp. 2633–2638. (2015). [Google Scholar]
  18. Asfour, T., et al. ARMAR-III: An integrated humanoid platform for sensory-motor control. IEEE-RAS International Conference on Humanoid Robots. (Genova, Italy, Dec. 4–6), 169–175. (2006). [Google Scholar]
  19. Reiser, U., et al. Care-O-bot® 3 - creating a product vision for service robot applications by integrating design and technology. IEEE/RSJ International Conference on Intelligent Robots and Systems. (St. Louis, USA, Oct. 11-15), 1992-1998. (2009). [Google Scholar]
  20. King, C.-H., et al. Towards an assistive robot that autonomously performs bed baths for patient hygiene. IEEE/RSJ International Conference on Intelligent Robots and Systems. (Taipei, Taiwan, Oct. 18-22), 319–324. (2010). [Google Scholar]
  21. Cousins, S., ROS on the PR2. IEEE Robotics & Automation Magazine. 1, 3 23-25. (Sept 2010). [CrossRef] [Google Scholar]
  22. Mukai, T., et al.. Tactile-based motion adjustment for the nursing-care assistant robot RIBA. IEEE International Conference on Robotics and Automation. (Shanghai, China, May 9-13), 5435 – 5441. (2011). [CrossRef] [Google Scholar]
  23. Hirose, T., et al. Development of hair-washing robot equipped with scrubbing fingers. IEEE International Conference on Robotics and Automation. (Saint Paul, USA, May 14-18, 2012), 1970-1975. (2012). [Google Scholar]
  24. American Honda Motor Co. Inc. History of ASIMO. Retrieved Jan. 10, (2014) from [Google Scholar]
  25. Osch, M. V., Bera, D., Hee, K. V., Koks, Y., & Zeegers, H. Tele-operated service robots:ROSE. Automation in Construction 39, 152–160. (2014). [CrossRef] [Google Scholar]
  26. Sean Ryan Fanello, Carlo Ciliberto, Nicoletta Noceti, Giorgio Metta, F. O. Visual recognition for humanoid robots. Robotics and Autonomous Systems, 91, 151–168. (2017). [CrossRef] [Google Scholar]
  27. García-Luna, F., & Morales-Díaz, A. Towards an artificial vision-robotic system for tomato identification. IFAC-PapersOnLine, 49(16), 365–370. (2016). [CrossRef] [Google Scholar]
  28. Rabbia Mahum*, Faisal Shafique Butt, Kashif Ayyub, Seema Islam, Marriam Nawaz, D. A. International Journal of Advanced and Applied Sciences. International Journal of Advanced and Applied Sciences, 4(2), 83–90. (2017). Retrieved from [CrossRef] [Google Scholar]
  29. A. Kurnicki, B. Stanczyk, and B. Kania, “Manipulator development for telediagnostics”. In: Proceedings of the International Conference on Mechatronics and Robotics, Structural Analysis (MEROSTA2014), 214 – 218. (2014). [Google Scholar]
  30. Butterfass J, Grebenstein M, Liu H, and Hirzinger G. DLR-Hand II: Next generation of a dextrous robot hand. In the IEEE International Conference on Robotics and Automation (ICRA), IEEE, Seoul, South Korea, 1: 109-114. (2001). [Google Scholar]
  31. Chua PY, Caldwell DG, Bezdicek M, Gray JO, and Davis S. Tele-operated high speed anthropomorphic dextrous hands with object shape and texture identification. In the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing, China: 4018-4023. (2006). [Google Scholar]
  32. Behnke, S. Humanoid robots-from fiction to reality?. In the Künstliche Intelligenz Heft, 4, 5–9. (2008). Available online at: [Google Scholar]
  33. Riek, L. D. Healthcare Robotics. (2017). Retrieved from [Google Scholar]
  34. Kraft, K., & Smart, W. D. Seeing is comforting: Effects of teleoperator visibility in robot-mediated health care. ACM/IEEE International Conference on Human-Robot Interaction, 2016–April, 11–18. (2016). [Google Scholar]
  35. Yasemin, M., & Kasımo, Y. Management of dental anxiety in children using robots Reduction of Dental Anxiety and Pain in Children using Robots, (May), 327–332. (2016). [Google Scholar]
  36. Beran, T. N., Ramirez-Serrano, A., Vanderkooi, O. G., & Kuhn, S. Humanoid robotics in health care: An exploration of children’s and parents’ emotional reactions. Journal of Health Psychology, 20(7), 984-989. (2015). [CrossRef] [Google Scholar]
  37. Beran, T. N., Ramirez-Serrano, A., Vanderkooi, O. G., & Kuhn, S. Reducing children’s pain and distress towards flu vaccinations: A novel and effective application of humanoid robotics. Vaccine, 31(25), 2772-2777. (2013). [CrossRef] [Google Scholar]
  38. McCaul KD, Malott JM. Distraction and coping with pain. Psychol Bull; 95(3):516. (1984). [CrossRef] [Google Scholar]
  39. DeMore M, Cohen L. Distraction for pediatric immunization pain: a critical review. J Clin Psychol Med Settings; 12(4):281-91. (2005) [CrossRef] [Google Scholar]
  40. Klassen, JA., Liang, Y., Tjosvold, L., Klassen, TP., Hartling, L. “Music for pain and anxiety in children undergoing medical procedures: a systematic review of randomized controlled trials”, Ambulatory Pediatrics, 8, 117-128. (2008). [CrossRef] [Google Scholar]
  41. M. Onishi, Z. W. Luo, T. Odashima, S. Hirano, K. Tahara, and T. Mukai, “Generation of Human Care Behaviors by Human-Interactive Robot RI-MAN,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 3128–3129, (2007). [Google Scholar]
  42. T. Mukai, M. Onishi, T. Odashima, S. Hirano, and Z. W. Luo, “Development of the Tactile Sensor System of a Human-Interactive Robot 'RI-MAN',” IEEE Trans. on Robotics, Vol.24, No.2, pp.505– 512, (2008 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.