Open Access
Issue
MATEC Web Conf.
Volume 251, 2018
VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018)
Article Number 04021
Number of page(s) 6
Section Modelling and Mechanics of Building Structures
DOI https://doi.org/10.1051/matecconf/201825104021
Published online 14 December 2018
  1. K.C. Khilar, H.S. Fogler, Migrations of fines in porous media (Dordrecht: Kluwer Academic Publishers, 1998). [CrossRef] [Google Scholar]
  2. C. Noubactep, S. Care, Dimensioning Metallic Iron Beds for Efficient Contaminant Removal, Chemical Engineering Journal, 163, 3 (2010) P. 454–460. [CrossRef] [Google Scholar]
  3. S. Bradford, H. Kim, B. Haznedaroglu, S. Torkzaban, S. Walker, Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media, Environmental Science and Technology, 43 (2009) P. 6996–7002. [CrossRef] [Google Scholar]
  4. D.C. Mays, J.R. Hunt, Hydrodynamic and chemical factors in clogging by montmorillonite in porous media, Environmental Science and Technology, 41 (2007) P. 5666–5671. [CrossRef] [Google Scholar]
  5. C.V. Chrysikopoulos, V.I. Syngouna, Effect of gravity on colloid transport through water-saturated columns packed with glass beads: Modeling and experiments, Environmental Science and Technology, 48 (2014) P. 6805–6813. [CrossRef] [Google Scholar]
  6. A. Santos, P. Bedrikovetsky, Size exclusion during particle suspension transport in porous media: stochastic and averaged equations, Computational and Applied Mathematics 23, 2-3 (2004) P. 259–284. [CrossRef] [Google Scholar]
  7. J.P. Herzig, D.M. Leclerc, P. Legoff, Flow of suspensions through porous media – application to deep filtration, Industrial and Engineering Chemistry, 62 (1970) P. 8–35. [CrossRef] [Google Scholar]
  8. P. Bedrikovetsky, Upscaling of stochastic micro model for suspension transport in porous media, Transport in Porous Media, 75 (2008) P. 335–369. [CrossRef] [Google Scholar]
  9. N.E. Leont’ev, D.A. Tatarenkova, Exact solutions to nonlinear equations of suspension flow through a porous medium, Moscow University Mechanics Bulletin, 70, 3 (2015) P. 61–65. [Google Scholar]
  10. P. Bedrikovetsky, Z. You, A. Badalyan, Y. Osipov, L. Kuzmina, Analytical model for straining-dominant large-retention depth filtration, Chemical Engineering Journal, 330 (2017) P. 1148–1159. [CrossRef] [Google Scholar]
  11. D.N. Mikhailov, N.I. Ryzhikov, V.V. Shako, Experimental Investigation of Transport and Accumulation of Solid Particle and Clay Suspensions in Rock Samples, Fluid Dynamics, 50, 5 (2015) P. 691–704. [CrossRef] [Google Scholar]
  12. Y.P. Galaguz, G.L. Safina, Modeling of Particle Filtration in a Porous Medium with Changing Flow Direction, Procedia Engineering, 153 (2016) P. 157–161. [CrossRef] [Google Scholar]
  13. L.I. Kuzmina, Yu.V. Osipov, Y.P. Galaguz, A model of two-velocity particles transport in a porous medium, International Journal of Non-linear Mechanics, 93 (2017) P. 1–6. [CrossRef] [Google Scholar]
  14. E.F. Toro, Riemann solvers and numerical methods for fluid dynamics (Springer, Dordrecht, 2009) [CrossRef] [Google Scholar]
  15. Y.P. Galaguz, Realization of the TVD-scheme for a numerical solution of the filtration problem, International Journal for Computational Civil and Structural Engineering, 13, 2 (2017) P. 93–102. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.