Open Access
Issue
MATEC Web Conf.
Volume 250, 2018
The 12th International Civil Engineering Post Graduate Conference (SEPKA) – The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018)
Article Number 06015
Number of page(s) 7
Section Environmental Engineering
DOI https://doi.org/10.1051/matecconf/201825006015
Published online 11 December 2018
  1. Said, Jasmin Binti Mohamad, and S. N. L. Taib. Peat stabilization with carbide lime. Diss. Universiti Malaysia Sarawak,2009. [Google Scholar]
  2. Gatti, P., Bonardi, M., Tosi, L., Rizzetto, F., Fornasiero, A., Gambolati, G. & Teatini, P. (2002). The Peat Deposit of the Subsiding Zennare Basin, South of the Venice Lagoon, Italy: Geotechnical Classification and Preliminary Mineralogical. [Google Scholar]
  3. Huat, B. B., Kazemian, S., Prasad, A., & Barghchi, M. (2011). State of an art review of peat: General perspective. International Journal of Physical Sciences, 6(8), 1988-1996. [Google Scholar]
  4. Huat, B. B. K. (2002, July). Some mechanical properties of tropical peat and organic soils. In 2nd World Engineering Congress, Sarawak (pp. 82-87). [Google Scholar]
  5. Wong, L. S., Hashim, R., & Ali, F. H. (2009). A review on hydraulic conductivity and compressibility of peat. Journal of Applied Sciences, 9(18), 3207-3218. [CrossRef] [Google Scholar]
  6. Islam, M. S., & Hashim, R. (2010). Stabilization of peat soil by soil-column technique and settlement of the group columns. International Journal of Physical Sciences, 5(9), 1411-1418. [Google Scholar]
  7. American Society for Testing and Materials. Annual Book of ASTM Standards (1992). Philadelphia, PA. USA [Google Scholar]
  8. Rahman, J. A., & Chan, C. M. (2014). Effect of Additive to the Moisture Content at Different Decomposition Level of Peat. Journal of Civil Engineering Research, 4(3A), 59-62. [Google Scholar]
  9. Kim, B., Prezzi, M., & Salgado, R. (2005). Geotechnical properties of fly and bottom ash mixtures for use in highway embankments. Journal of Geotechnical and Geoenvironmental Engineering, 131(7), 914-924. [CrossRef] [Google Scholar]
  10. Samsudin, A. R., Hamzah, U., & Rafek, A. G. (1997). Salinity study of coastal groundwater aquifers in North Kelantan, Malaysia. [Google Scholar]
  11. Khoon, S. H., Issabayeva, G. I., & Lee, L. W. (2011). Measurement of rainwater chemical composition in Malaysia based on ion chromatography method. World Academy of Science, Engineering, and Technology, 11, 161-168. [Google Scholar]
  12. Kritzberg, E. S., & Ekström, S. M. (2012). Increasing iron concentrations in surface waters-a factor behind brownification? Biogeosciences, 9(4), 1465. [CrossRef] [Google Scholar]
  13. Carlson, C. L., & Adriano, D. C. (1993). Environmental impacts of coal combustion residues. Journal of Environmental Quality, 22(2), 227-247. [CrossRef] [Google Scholar]
  14. Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. C., & Straughan, I. (1980). Utilization and Disposal of Fly Ash and Other Coal Residues in Terrestrial Ecosystems: A Review 1. Journal of Environmental Quality, 9(3), 333-344. [CrossRef] [Google Scholar]
  15. Sarkkola, S., Nieminen, M., Koivusalo, H., Laurén, A., Kortelainen, P., Mattsson, T., & Finér, L. (2013). Iron concentrations are increasing in surface waters from forested headwater catchments in eastern Finland. Science of the Total Environment, 463, 683-689. [CrossRef] [Google Scholar]
  16. Graneli, W. (2012). Brownification of lakes. In Encyclopedia of lakes and reservoirs (pp. 117-119). Springer Netherlands. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.