Open Access
Issue
MATEC Web Conf.
Volume 249, 2018
2018 5th International Conference on Mechanical, Materials and Manufacturing (ICMMM 2018)
Article Number 03005
Number of page(s) 7
Section Mechanical Engineering and Digital Manufacturing
DOI https://doi.org/10.1051/matecconf/201824903005
Published online 10 December 2018
  1. Wolf, S., Hirzinger, G., “A new variable stiffness design: Matching requirements of the next robot generation.” In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1741–1746. IEEE (2008) [Google Scholar]
  2. Capehart T, Moore CA, Jr. Variable Stiffness Mechanisms Using Spherical Continuously Variable Transmissions. ASME. ASME International Mechanical Engineering Congress and Exposition, Volume 4A: Dynamics, Vibration, and Control (): V04AT04A021. doi:10.1115/IMECE2015-51828. [Google Scholar]
  3. G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, 1995, pp. 399-406. [Google Scholar]
  4. R. A. Brooks, L. A. Stein, “Building Brains for Bodies”, Autonomous Robots, vol. 1, no. 1, 1994. [CrossRef] [Google Scholar]
  5. Van Ham R, Sugar T G, Vanderborght B, et al. Compliant actuator designs: Review of actuators with passive adjustable compliance/controllable stiffness for robotic applications[J]. IEEE Robotics and Automation Magazine, 2009, 16(3): 81-94. [CrossRef] [Google Scholar]
  6. Shane A. Migliore, E. A. Brown, and S. P. DeWeerth, Biologically inspired joint stiffness control, IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005. [Google Scholar]
  7. He F B, Liang Y D, Sun J F, et al. Study on elastically actuated joints of robot for mimicking musculotendinous functions based on SEAs[J]. China Mechanical Engineering, 2014, 25(7): 900-905. [Google Scholar]
  8. R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst, and D. Lefeber, “MACCEPA, the Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator: Design and Implementation in a Biped Robot,” Robotics and Autonomous Systems, vol. 55, no. 10, pp. 761–768, October 2007. [CrossRef] [Google Scholar]
  9. Rainer Bischoff, Johannes Kurth, Gunter Schreiber, Ralf Koeppe, Alin Albu-Schaffer, Alexander Beyer, Oliver Eiberger, Sami Haddadin, Andreas Stemmer, Gerhard Grunwald, and Gerhard Hirzinger. The kukadlr lightweight robot arm - a new reference platform for robotics research and manufacturing. In accepted at International Symposium on Robotics (ISR2010), 2010 [Google Scholar]
  10. A. Jafari, N. Tsagarakis, B. Vanderborght, and darwin Caldwell, “Awas: a novel actuator with adjustable stiffness,” is in the Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010. [Google Scholar]
  11. N. G. Tsagarakis, I. Sardellitti, and D. G. Caldwell, “A new variable stiffness actuator (CompAct-VSA): design and modelling,” in Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics (IROS ‘11), pp. 378–383, IEEE, San Francisco, Calif, USA, September 2011. [Google Scholar]
  12. S. Groothuis, G. Rusticelli, A. Zucchelli, S. Stramigioli, R. Carloni, “The variable stiffness actuator vsaUT—II: Mechanical design modeling and identification”, IEEE/ASME Trans. Mechatronics, vol. 19, no. 2, pp. 589-597, Apr. 2014. [CrossRef] [Google Scholar]
  13. A. Jafari, N. G. Tsagarakis, I. Sardellitti, D. G. Caldwell, “A new actuator with adjustable stiffness based on a variable ratio lever mechanism”, IEEE/ASME Trans. Mechatronics, vol. 19, no. 1, pp. 55-64, Feb. 2014. [CrossRef] [Google Scholar]
  14. Kim S., Moore C., Peshkin M., and Colgate J. E., 2008, “Causes of Microslip in a Continuously Variable Transmission,” ASME J. Mech. Des. 130 (1), pp. 011010. [CrossRef] [Google Scholar]
  15. C. A. Moore, M. A. Peshkin, and J. E. Colgate, “Design of a 3R cobot using continuously variable transmissions,” in IEEE Int. Conf. Robot. Automat., 1999 [Google Scholar]
  16. C. A. Moore, “Continuously variable transmission for serial link cobotarchitectures,” Master’s thesis, Northwestern Univ., 1997. [Google Scholar]
  17. N. H. Beachley and A. A. Frank, “Continuously variable transmissions: Theory and practice,” Lawrence Livermore Lab., CA, OCLC: 06 690 884, 1979. [Google Scholar]
  18. R. B. Gillespie, C. A. Moore, M. A. Peshkin, and J. E. Colgate, “Kinematic creep in continuously variable transmissions: Traction drive mechanics for cobots,” J. Mech. Syst. Design, submitted for publication. [Google Scholar]
  19. FANG Li-jin, ZHOU Sheng-qi, WANG Yan. Structure Design of a New Variable Stiffness Joint. Journal of Northeastern University Nature Science, 2017, 38(12): 1748-1753. DOI: 10.12068/j.issn.1005-3026.2017.12.017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.