Open Access
Issue
MATEC Web Conf.
Volume 249, 2018
2018 5th International Conference on Mechanical, Materials and Manufacturing (ICMMM 2018)
Article Number 01002
Number of page(s) 8
Section Functional Material Design and Development
DOI https://doi.org/10.1051/matecconf/201824901002
Published online 10 December 2018
  1. Martins G, Antunes F, Mateus AandMalça C. Optimization of a Wood Plastic Composite for Architectural Applications. Procedia Manufacturing 2017;12 pp 203-20. [CrossRef] [Google Scholar]
  2. Pizzo B, Macchioni N, Capretti C, Pecoraro E, Sozzi LandFiorentino L. Assessing the wood compressive strength in pile foundations in relation to diagnostic analysis: The example of the Church of Santa Maria Maggiore, Venice. Construction and Building Materials 2016;114 pp 470-80. [CrossRef] [Google Scholar]
  3. CRIBE partners with Magna to integrate wood fibre into automotive parts. Additives for Polymers 2012;2012(8) pp 5. [Google Scholar]
  4. Ashori A. Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology 2008;99(11) pp 4661-67. [CrossRef] [Google Scholar]
  5. Stokke DDandGardner DJ. Fundamental aspects of wood as a component of thermoplastic composites. Journal of Vinyl and Additive Technology 2003;9(2) pp 96-104. [CrossRef] [Google Scholar]
  6. Kohl D, Long THNandBöhm S. Wood-based Multi-material Systems for Technical Applications –Compatibility of Wood from Emerging and Developing Countries. Procedia Manufacturing 2017;8 pp 611-18. [CrossRef] [Google Scholar]
  7. Hunt D. Properties of wood in the conservation of historical wooden artifacts. Journal of Cultural Heritage 2012;13(3) pp S10-S15. [CrossRef] [Google Scholar]
  8. Müller M, Militz HandKrause A. Thermal degradation of ethanolamine treated poly(vinyl chloride)/wood flour composites. Polymer Degradation and Stability 2012;97(2) pp 166-69. [CrossRef] [Google Scholar]
  9. Barton-Pudlik J, Czaja K, Grzymek MandLipok J. Evaluation of wood-polyethylene composites biodegradability caused by filamentous fungi. International Biodeterioration & Biodegradation 2017;118 pp 10-18. [CrossRef] [Google Scholar]
  10. Mrad H, Alix S, Migneault S, Koubaa AandPerré P. Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement 2018;115 pp 197-203. [CrossRef] [Google Scholar]
  11. Zhou A, Tam L-h, Yu ZandLau D. Effect of moisture on the mechanical properties of CFRP– wood composite: An experimental and atomistic investigation. Composites Part B: Engineering 2015;71 pp 63-73. [CrossRef] [Google Scholar]
  12. TetraPak. Performance Data 2016: TetraPak; 2018 [updated March 2018. Available from: https://www.tetrapak.com/sustainability/environ mental-impact/a-value-chainapproach/sustainability-measuring-andreporting/performance-data. [Google Scholar]
  13. Korkmaz A, Yanik J, Brebu MandVasile C. Pyrolysis of the tetra pak. Waste Management 2009;29(11) pp 2836-41. [CrossRef] [Google Scholar]
  14. Nyström T. Production of panel board – a world overview. TetraPak; 2000 August 2000. [Google Scholar]
  15. Adrados A, de Marco I, Caballero BM, López A, Laresgoiti MFandTorres A. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Management 2012;32(5) pp 826-32. [CrossRef] [Google Scholar]
  16. Hassanin AHandCandan Z. Novel Bio-Based Composites Panels from TetraPak Waste. Key Engineering Materials 2016;689 pp 138-42. [CrossRef] [Google Scholar]
  17. Mohareb ASO, Hassanin AH, Candelier K, Thévenon MFandCandan Z. Developing Biocomposites Panels from Food Packaging and Textiles Wastes: Physical and Biological Performance. Journal of Polymers and the Environment 2016;25(2) pp 126-35. [CrossRef] [Google Scholar]
  18. Yilgor N, Köse C, Terzi E, Figen AK, Ibach R, Kartal SN, et al. Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials. BioResources 2014;9(3) pp. [CrossRef] [Google Scholar]
  19. Hassanin AH, Candan Z, Demirkir CandHamouda T. Thermal insulation properties of hybrid textile reinforced biocomposites from food packaging waste. Journal of Industrial Textiles 2016;47(6) pp 1024-37. [CrossRef] [Google Scholar]
  20. Treviso A, Van Genechten B, Mundo DandTournour M. Damping in composite materials: Properties and models. Composites Part B: Engineering 2015;78 pp 144-52. [CrossRef] [Google Scholar]
  21. Rangasamy S, Loganathan KandNatesan A. Experimental investigation and numerical analysis of the dynamic characteristics of a laminated hybrid composite bed. Polymer Composites 2015;38(1) pp 20-26. [CrossRef] [Google Scholar]
  22. El-Khatib AandNassef MGA. Advances in Modal Analysis Application. Journal of Vibration Testing and System Dynamics 2017;1(2) pp 153-66. [CrossRef] [Google Scholar]
  23. Nassef MGA, Elkhatib AandHamed M. Correlating the Vibration Modal Analysis Parameters to the Material Impact Toughness for Austempered Ductile Iron. Materials Performance and Characterization 2015;4(1) pp 12. [Google Scholar]
  24. Kouroussis G, Ben Fekih LandDescamps T. Assessment of timber element mechanical properties using experimental modal analysis. Construction and Building Materials 2017;134 pp 254-61. [CrossRef] [Google Scholar]
  25. Hwang S-F, Yeh C-KandChung S-C. Inverse determination of elastic constants of composite materials. Polymer Composites 2009;30(5) pp 521-27. [CrossRef] [Google Scholar]
  26. Geweth CA, Khosroshahi FS, Sepahvand K, Kerkeling CandMarburg S. Damage Detection of Fibre-Reinforced Composite Structures Using Experimental Modal Analysis. Procedia Engineering 2017;199 pp 1900-05. [CrossRef] [Google Scholar]
  27. Park HSandOh BK. Damage detection of building structures under ambient excitation through the analysis of the relationship between the modal participation ratio and story stiffness. Journal of Sound and Vibration 2018;418 pp 122-43. [CrossRef] [Google Scholar]
  28. Yakout M, Elkhatib AandNassef MGA. Rolling element bearings absolute life prediction using modal analysis. Journal of Mechanical Science and Technology 2018;32(1) pp 91-99. [CrossRef] [Google Scholar]
  29. TetraPak. Packaging material for Tetra Pak carton packages. In: TetraPak, editor. 2018. [Google Scholar]
  30. Carne T, Griffith DandCasias M. Support Conditions for Free Boundary-Condition Modal Testing 2018. [Google Scholar]
  31. Colakoglu M. Effect of Temperature on Frequency and Damping Properties of Polymer Matrix Composites. Advanced Composite Materials 2008;17(2) pp 111-24. [CrossRef] [Google Scholar]
  32. Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending. ASTM International. [Google Scholar]
  33. Ross RJandUsda Forest Service FPL. Wood handbook: wood as an engineering material. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; 2010. [CrossRef] [Google Scholar]
  34. Guo Y, Xu W, Fu YandWang H. Dynamic Shock Cushioning Characteristics and Vibration Transmissibility of X-PLY Corrugated Paperboard. Shock and Vibration 2011;18(4) pp 525-35. [CrossRef] [Google Scholar]
  35. Gargallo L. Physicochemical Behavior and Supramolecular Organization of Polymers. In: Radic D, editor. Reports the physicochemical behaviour of polymers in solution, bulk, and at 2-D interfaces. 1 ed: Springer Netherlands; 2009. p. XIV, 242. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.