Open Access
Issue
MATEC Web Conf.
Volume 245, 2018
International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2018)
Article Number 06008
Number of page(s) 7
Section Energy Efficient and Green Buildings
DOI https://doi.org/10.1051/matecconf/201824506008
Published online 05 December 2018
  1. A. Inozemtsev., V. Sandratsky. Gas turbine engines. OAO Aviadvigatel. Permian. 1204p. (2006). [Google Scholar]
  2. A. Grigoriev, V. Mitrofanov, O. Rudakov, N. Salivon. Theory of the combustion chamber. 227p. (2010). [Google Scholar]
  3. B. Khanal, L. He, J. Northall and P. Adami. Unsteady aerothermal behavior of HP turbine stage under influence of combustor hot streak and swirl. Proceedings of ISUAAAT. (2013). [Google Scholar]
  4. T. Shang, G. Guenette, A. Epstein and A. Saxer. The influence of inlet temperature distortion on rotor heat transfer in transonic turbine. AlAA Paper 95-3042. (1995). [Google Scholar]
  5. S. Harasgama. Combustor Exit Temperature distortion effects on Heat Transfer and Aerodynamics within a Rotating Turbine Blade Passage. ASME Paper 90-GT-174. (1990). [Google Scholar]
  6. R. Moss, M. Oldfield. Measurements of Hot Combustor Turbulence Spectra. ASME paper 91GT-351. (1991). [Google Scholar]
  7. D. Dorney, R. Davis, D. Edwards, N. Madavan. Unsteady Analysis of Hot Streak Migration in a Turbine Stage. AIAA Paper 90-2354. (1990). [Google Scholar]
  8. P. Gaetani, G. Persico. Hot streak evolution in an axial HP turbine stage. Proceedings of 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics (ETC12) ETC 2017-182. Stockholm. Sweden. 14 p. (2017). [Google Scholar]
  9. I. Qureshi, A. Smith, T. Povey. HP vane aerodynamics and heat transfer in the presence of aggressive inlet swirl. GT2011-46037. Proceedings of ASME Turbo Expo. Vancouver, British Columbia. Canada. (2011). [Google Scholar]
  10. B. Lakshminarayana. J. Fluids Engineering, 113(3), (1991). [CrossRef] [Google Scholar]
  11. Numerical simulation of unsteady phenomena in gas turbine engines. Edited by V. Avgustinovich and Y. Shmotin. M.: Publishing house mechanical engineering. 536 p. (2005). [Google Scholar]
  12. A.V. Grigoriev, A.I. Yakunin, N.B. Kuznechov, V.F. Kondratiev, N.N. Kortikov, St. Petersburg State Polytechnic University Journal of Engineering Science and Technology, 1 (166), 183-191 (2013). [Google Scholar]
  13. A. Grigoriev, A. Iakunin, N. Kuznechov, V. Kondratiev, N. Kortikov. 10-th European conference on turbomachinery. Fluid Dynamics and Thermodynamics. Conference proceedings, Lapperanta. University of Technology. Finland, 854-864. (2013). [Google Scholar]
  14. A. Iakunin. Star-global-conference 2014. March 17-19. Vienna. (2014). [Google Scholar]
  15. N. Kuznetsov, N. Kortikov, XII International Scientific and Practical Conference “Solution of Heat and Mass Transfer and Strength Problems” (2017). [Google Scholar]
  16. User Guide STAR-CCM+ 10.06. CD-adapco. 10998p. (2015). [Google Scholar]
  17. F. Saffman. Dynamics of vortices. 376p. (2001). [Google Scholar]
  18. S. Alekseenko, P. Kuibin, V. Okulov. Introduction to the theory of concentrated vortices. Novosibirsk: Institute of Thermophysics. SB RAS. 504p. (2003). [Google Scholar]
  19. M. Kurgansky, Izv. RAS. Physics of the atmosphere and ocean, 53 (2), (2017). [Google Scholar]
  20. O. Mitrofanova. Hydrodynamics and heat transfer of swirling flows in the channels of nuclear power plants. 288p. (2010). [Google Scholar]
  21. A. Kirillov, S. Galaev, V. Isupov, E. Smirnov, St. Petersburg State Polytechnic University Journal of Engineering Science and Technology, 4 (207), 16-25 (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.