Open Access
Issue
MATEC Web Conf.
Volume 241, 2018
International Conference on Structural Nonlinear Dynamics and Diagnosis (CSNDD 2018)
Article Number 01007
Number of page(s) 4
DOI https://doi.org/10.1051/matecconf/201824101007
Published online 03 December 2018
  1. World Health Organization HIV/AIDS Key facts, (July 2014), http://www.who.int/mediacentre/factsheets/fs360/en/index.h [Google Scholar]
  2. Nowak, M.A., Bonhoeffer, S., Shaw, G.M., May, R.M. (1997) Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations. J. Theor. Biol. 184(2):203–217. [CrossRef] [Google Scholar]
  3. Sun, Q., Min, L., & Kuang, Y. (2015) Global stability of infection-free state and endemic infection state of a modified human immunodeficiency virus infection model. IET systems biology, 9(3), 95–103. [CrossRef] [Google Scholar]
  4. Allali, K., Danane, J. and Kuang, Y., 2017. Global Analysis for an HIV Infection Model with CTL Immune Response and Infected Cells in Eclipse Phase. Applied Sciences (2076-3417), 7(8). [Google Scholar]
  5. Wang, Y., Zhou, Y., Wu, J., Heffernan, J. (2009). Oscillatory viral dynamics in a delayed HIV pathogenesis model. Math. Biosci. 219, 104–112. [CrossRef] [Google Scholar]
  6. Wang, X., Wang, W. (2012) An HIV infection model based on a vectored immunoprophylaxis experiment. Journal of theoretical biology 313:127–135. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. Q. Sun, L. Min. Dynamics Analysis and Simulation of a Modified HIV Infection Model with a Saturated Infection Rate. Computational and mathematical methods in medicine, 2014; 2014, Article ID 145162, 14 pages. [Google Scholar]
  8. Hale J, Verduyn Lunel SM(1993) Introduction to functional differential equations, applied mathematical science, vol 99. Springer, New York. [Google Scholar]
  9. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993. [Google Scholar]
  10. R.V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of D4+ T-cells, Math. Biosci. 165(2000) 27–39. [CrossRef] [PubMed] [Google Scholar]
  11. R.V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell HIV-1 that include a time delay, J. Math.Biol. 46 (2003) 425–444. [Google Scholar]
  12. J.E. Mittler, B. Markowitz, D.D. Ho, A.S. Perelson, Improved estimates for HIV-1 clearance rate and intracellular delay, AIDS 13 (1999) 1415–1417. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.