Open Access
MATEC Web Conf.
Volume 151, 2018
2017 Asia Conference on Mechanical and Aerospace Engineering (ACMAE 2017)
Article Number 03002
Number of page(s) 5
Section Fluid Mechanics and Computation
Published online 21 February 2018
  1. Y. Huang, F. Qian, K Yu, and Experimental Investigation on Boundary-layer Artificial Transition Based on Transonic Trip Disk. Journal of Experiments in Fluid Mechanics (In Chinese), Vol. 20, No. 3, pp. 59~62. (2006). [Google Scholar]
  2. Y. Li, D. Li, Y. Yang, and Study on the Swept Wing Crossflow Stationary Wave and Its Harmonics. Journal of Experiments in Fluid Mechanics (In Chinese), Vol. 24, No. 3, pp. 25~28.(2006), [Google Scholar]
  3. Y. Li, D. Yan. An Experimental Investigation on the Effect of Single Two-Dimensional Roughness Elements on Boundary-Layer Transition. Journal of Peking University (In Chinese), Vol.41, No.1, pp.71~75(2005) [Google Scholar]
  4. J. C. Juillen, D. Arnal. Experimental and Theoretical Study of Transition Phenomena on an Infinite Swept Wing[R].Rapp. Final No.51/5018, 5, CERT/ONERA, Toulouse(1990) [Google Scholar]
  5. R. H. Radeztsky Jr, M. S. Reibert, W. S. Saric. Development of Stationary Crossflow Vortices on a Swept Wing [R]. AIAA 2373(1994) [Google Scholar]
  6. B. Muller, H. Bippes. Experimental Study of Instability Modes in a Three-dimensional Boundary Layer. In: Proc AGARD Symp On Fluid Dynamics of Three-Dimensional Turbulent Sheer Flows and Transition[R]. Cesme, Turkey,AGARD C-P 438(1988). [Google Scholar]
  7. H. Deyhle, H. Bippes. Disturbance Growth in an Unstable Three-dimensional Boundary-layer and Its Dependence on Environmental Conditions[J]. Journal of Fluid Mechanics, 316: 73-113(1996) [CrossRef] [Google Scholar]
  8. M. S. Reibert. Nonlinear Stability Saturation, and Transi-tion in Crossflow-dominated Boundary layer[D]. USA: Arizona State University(1996) [Google Scholar]
  9. S. S. Collis, S. K. Lele. Receptivity to Surface Roughness Near a Swept Leading Edge. Journal of Fluid Mechanics,, 380: 141-168(1999) [CrossRef] [Google Scholar]
  10. S. Robert, Downs III, B. Edward, White, A.Nicholas. Denissen. Transient Growth and Transition Induced by Random Distributed Roughness[J].AIAA Journal, 46(2):451~462(2008) [CrossRef] [Google Scholar]
  11. D.Nathaniel, Varano, L. Roger, Simpson. Structure of Turbulent Boundary Layers and Surface Pressure Fluctuations with Sparse Roughness[R].AIAA 700, (2010) [Google Scholar]
  12. Olaf Marxen, Gianluca Iaccarino.Numerical simulation of the effect of a roughness element on high-speed boundary-layer instability[R]. AIAA 4400(2008) [Google Scholar]
  13. Chau Lyan Chang, Meelan M. Choudhari. Hypersonic Viscous Flow over Large Roughness Elements[R]. AIAA 0173 (2009). [Google Scholar]
  14. B. Plogmann, W. Wuurz, E. Kruamer. Interaction of a Laminar Boundary Layer with a Cylindrical Roughness Element near an Airfoil Leading Edge[R]. AIA-3077 (2012) [Google Scholar]
  15. A. Braslow, E.Knox, Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers from 0 to 5. NACA TN 4363, 82~83(1958) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.