Open Access
Issue
MATEC Web of Conferences
Volume 150, 2018
Malaysia Technical Universities Conference on Engineering and Technology (MUCET 2017)
Article Number 06020
Number of page(s) 5
Section Information & Communication Technology (ICT), Science (SCI) & Mathematics (SM)
DOI https://doi.org/10.1051/matecconf/201815006020
Published online 23 February 2018
  1. Sabri, N., Aljunid, S. A., Salim, M. S., Fouad, S., & Kamaruddin, R. (2015). Wireless Sensor Network Wave Propagation in Vegetation. In Recent Trends in Physics of Material Science and Technology (pp. 283–298). Springer Singapore [Google Scholar]
  2. Serodio, C., Cunha, J. B., Morais, R., Couto, C., & Monteiro, J. (2001). A networked platform for agricultural management systems. Computers and electronics in agriculture, 31(1), 75–90. [CrossRef] [Google Scholar]
  3. Auda Raheemah, Naseer Sabri, Phaklen Ehkan, R. Badlishah and M. S. Salim (2015). Influences of Parts of Tree on Propagation Path Losses for WSN Deployment In Greenhouse Environments. Journal of Theoretical and Applied Information Technology December 2015. Vol. 82. No.2 [Google Scholar]
  4. Meng, Y. S., Lee, Y. H., & Ng, B. C. (2010). Path loss modeling for near-ground vhf radio-wave propagation through forests with tree-canopy reflection effect. Progress In Electromagnetics Research M, 12, 131–141. [CrossRef] [Google Scholar]
  5. Sabri N., Aljunid S A, Ahmad R B, Malek M F, Yahya A, Kamaruddin R, Salim M S (2012). Performance Evaluation of Wireless Sensor Network Channel in Agricultural Application. American Journal of Applied Sciences. 9 (1), pp: 141–151, 2012. [CrossRef] [Google Scholar]
  6. Rappaport, Theodore S. Wireless communications: principles and practice. 2nd Eddition. New Jersey: Prentice Hall PTR, 2002. [Google Scholar]
  7. AlSayyari, A., Kostanic, I., Otero, C., Almeer, M., & Rukieh, K. (2014, March). An empirical path loss model for wireless sensor network deployment in a sand terrain environment. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 218–223). IEEE. [Google Scholar]
  8. Zhou, G., He, T.,Krishnamurthy, S., & Stankovic, J. A. (2004, June). Impact of radio irregularity on wireless sensor networks. In Proceedings of the 2nd international conference on Mobile systems, applications, and services (pp. 125–138). ACM. [Google Scholar]
  9. Kirubanand, V. B., & Palaniammal, S. (2011). Study of performance analysis in wired and wireless network. American Journal of Applied Sciences, 8(8), 826. [CrossRef] [Google Scholar]
  10. Sklar, Bernard. Digital Communications: Fundamentals and Applications. 2nd Eddition. New Jersey: Prentice Hall PTR, 2001. [Google Scholar]
  11. Hebel, M. A., Tate, R. F., & Watson, D. G. (2007). Results of wireless sensor network transceiver testing for agricultural applications. In 2007 ASAE Annual Meeting (p.1). American Society of Agricultural and Biological Engineers. [Google Scholar]
  12. Thelen, J., Goense, D., & Langendoen, K. (2005, April). Radio wave propagation in potato fields. In 1st Workshop on Wireless Network Measurements (Vol. 2, pp. 331–338). [Google Scholar]
  13. Janek, J. F., & Evans, J. J. (2010). Predicting ground effects of omnidirectional antennas in wireless sensor networks. Wireless Sensor Network, 2(12), 879. [CrossRef] [Google Scholar]
  14. Auda Raheemah, Naseer Sabri, M. S. Salim, Phaklen Ehkan, R. Badlishah Ahmad (2016). New empirical path loss model for wireless sensor networks in mango greenhouses. Computers and Electronics in Agriculture 127 (2016) 553–560. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.