Open Access
Issue
MATEC Web of Conferences
Volume 150, 2018
Malaysia Technical Universities Conference on Engineering and Technology (MUCET 2017)
Article Number 03006
Number of page(s) 6
Section Civil Engineering
DOI https://doi.org/10.1051/matecconf/201815003006
Published online 23 February 2018
  1. J.G. Shanthikumar, R.G. Sargent. A Unifying View Of Hybrid Simulation/Analytic Models And Modeling. Operations research, 31(6), pp.1030-1052 (1983) [CrossRef] [Google Scholar]
  2. A. D. May, Traffic Flow Fundamentals, Prentice Hall Englewood Cliffs, New Jersey (1990). [Google Scholar]
  3. S. Mahajan, A. Umadekar, K.Jethwa. New Concept Of Traffic Rotary Design At Road Intersections. Procedia-Social and Behavioral Sciences, 96, pp.2791-2799 (2013) [CrossRef] [Google Scholar]
  4. M. Friedrich. Multimodal Transport planning. Stuttgart University, Germany (2015). (Lecture Notes). [Google Scholar]
  5. J. Barcello. Fundamentals of Traffic Simulation. International Series in Operations Research and Management Science. Barcelona, Spain, pp. 68-69 (2010) [Google Scholar]
  6. R.M. Michaels. Perceptual Factors In Car Following. In Proceedings of The 2nd International Symposium on The Theory of Road Traffic Flow, London, England, OECD (1963) [Google Scholar]
  7. P.G. Gipps. A Model For The Structure Of Lane-Changing Decisions. Transportation Research Part B: Methodological, 20(5), pp. 403-414 (1986) [CrossRef] [Google Scholar]
  8. A.K. Rathi, Z.A. Nemeth. Freesim: A Microscopic Simulation Model Of Freeway Lane Closures (abridgment), 91, pp. 21-24 (1996) [Google Scholar]
  9. B.D. Greenshields, W. Channing, H.A. Miller. A Study Of Traffic Capacity. In Highway research board proceedings. National Research Council (USA), Highway Research Board, 14, pp. 448-477 (1935) [Google Scholar]
  10. H. Qing, L. Head, J. Ding. PAMSCOD: Platoon-Based Arterial Multi-Modal Signal Control With Online Data. Transportation Research Part C: Emerging Technologies, 20(1), pp. 164-184 (2012) [CrossRef] [Google Scholar]
  11. Highway capacity manual. Washington, DC (2000) [Google Scholar]
  12. L. Yu. Calibration Of Platoon Dispersion Parameters On The Basis Of Link Travel Time Statistics. Transportation Research Record: Journal of the Transportation Research Board, 1727, pp. 89-94 (2000). [CrossRef] [Google Scholar]
  13. R. Cervero. Journal Report: Light Rail Transit And Urban Development. Journal of the American Planning Association, 50(2), pp.133-147 (1984) [CrossRef] [Google Scholar]
  14. J. Barceló, E. Bernauer, L. Breheret, G. Canepari, C.D. Taranto, J. Ferrer, R. Liu. Simulation Modelling Applied to Road Transport European Scheme Tests (SMARTEST)–Review of MicroSimulation Models. In Institute for Transport Studies, University of Leeds (1998) [Google Scholar]
  15. PTV VISSIM 5.30-05 User Manual. Karlsruhe: Planning Transport, Verkehr AG (2011) [Google Scholar]
  16. J. Barceló, J. Casas. Dynamic Network Simulation With AIMSUN. Springer US. pp. 57-98 (2005) [Google Scholar]
  17. C.P. Haas. Assessing Developments Using AIMSUN. In Institution of Professional Engineers New Zealand. Annual conference (2001) [Google Scholar]
  18. J. Barcelo, L. Ferrer, R. Martin. Simulation Assisted Design and Assesment of Vehicle Guidance Systems. Department d’Estadistica I Investigacio Operativa, Polytechnic University of Catalunya, (1997) [Google Scholar]
  19. M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz. SUMO–Simulation Of Urban Mobility: An Overview. In Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation. ThinkMind (2011) [Google Scholar]
  20. Hertkorn, G, Wagner, P. The Application Of Microscopic Activity Based Travel Demand Modelling In Large Scale Simulations (2004) [Google Scholar]
  21. D. Krajzewicz, G. Hertkorn, C. Rössel, P. Wagner. SUMO (Simulation of Urban Mobility)-An Open-Source Traffic Simulation. In Proceedings of the 4th middle East Symposium on Simulation and Modelling, pp. 183-187 (2002) [Google Scholar]
  22. H. Rakha, B. Crowther. Comparison And Calibration Of FRESIM And INTEGRATION Steady-Statecar-Following Behavior. Transportation Research Part A: Policy and Practice, 37(1), pp. 1-27 (2003) [CrossRef] [Google Scholar]
  23. R.L. Cheu, X. Jin, K.C. Ng, Y.L. Ng, D. Srinivasan. Calibration Of FRESIM For Singapore Expressway Using Genetic Algorithm. Journal Of Transportation Engineering, 124(6), pp. 526-535 (1998) [CrossRef] [Google Scholar]
  24. Federal Highway Administration. US Department of Transportation (1981) [Google Scholar]
  25. A. Halati, H. Lieu, S. Walker. CORSIM-Corridor Traffic Simulation Model. In Traffic Congestion and Traffic Safety in the 21st Century: Challenges, Innovations And Opportunities (1997) [Google Scholar]
  26. L. Bloomberg, J. Dale. Comparison of VISSIM and CORSIM traffic simulation models on a congested network. Transportation Research Record: Journal of the Transportation Research Board, 1727, pp. 52-60 (2000) [CrossRef] [Google Scholar]
  27. Federal Highway Administration. US Department of Transportation (1981) [Google Scholar]
  28. G.D.B. Cameron, G.I.D. Duncan. PARAMICS —Parallel Microscopic Simulation Of Road Traffic. The Journal of Supercomputing, 10(1), pp. 25-53 (1996) [CrossRef] [Google Scholar]
  29. B. Abdulhai, J.B. Sheu, W. Recker. Simulation Of ITS On The Irvine FOT Area Using" Paramics 1.5" Scalable Microscopic Traffic Simulator: Phase I: Model Calibration and Validation. California Partners for Advanced Transit and Highways (PATH) (1999) [Google Scholar]
  30. M. Smith, G. Duncan, S. Druitt. PARAMICS: Microscopic Traffic Simulation For Congestion Management (1995) [Google Scholar]
  31. C. Hildebrand, S.A. Hörtin. Comparative Study Between Emme And Visum With Respect To Public Transport Assignment. (2014) [Google Scholar]
  32. B.R. Muley, U. Chande, C. S. R. K. Prasad. Planning For Feeder Bus Services Using Visum: A Case Study Of Mumbai, India (2015) [Google Scholar]
  33. PTV VISUM User Manual (2014) [Google Scholar]
  34. J. Aron. Using ‘SATURN’ To Determine The Effect Of Data On Model Accuracy And Operation Efficiency On A Network Of A Small CBD (Doctoral dissertation) (2014) [Google Scholar]
  35. L. He, C. Fu, L. Yang, S. Tong, Q. Luo. Coordinated Real-Time Control Algorithm For Multi-Crossing Traffic Lights. In Natural Computation (ICNC), 2014 10th International Conference. Pp. 128-133. IEEE (2014) [CrossRef] [Google Scholar]
  36. T. Worsley, P. Mackie. Institute for Transport Studies, University of Leeds (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.