Open Access
MATEC Web Conf.
Volume 149, 2018
2nd International Congress on Materials & Structural Stability (CMSS-2017)
Article Number 02048
Number of page(s) 6
Section Session 2 : Structures & Stability
Published online 14 February 2018
  1. D. Bondar, C. J. Lynsdale, N. B. Milestone, N. Hassan, Geopolymer Cement from Alkali-Activated Natural Pozzolans : Effect of Addition of Minerals, 2nd International Conference On Sustainable Construction Materials and Technologies, Università Politecnica delle Marche, Ancona, Italia, 28-30 June, (2010). [Google Scholar]
  2. Y. Tatsumi et T. Akahashi, Operation of subduction factory and production of andesite, (JAMSTEC), Vol.101 (1), P.145-153, (2006). [Google Scholar]
  3. P. M. Black, Andesites as resources for roading and concrete industries, North Island of New Zealand, Department of Geology, University of Auckland, Auckland 1020, P. 328-332, (2009). [Google Scholar]
  4. Takanori, Y. Kawabata, H. Hamada, Y. Sagawa, Alkali-Silica Reactivity of Andesite in NaCl Saturated Solution, International Conference on Durability of Concrete Structures, China, P. 1-8, (2008). [Google Scholar]
  5. U. Chinje melo, N. Billong, Activité pouzzolanique des déchets de briques et tuiles cuites. Laboratoire des Matériaux et du Contrôle de Qualité, (AJST), vol. 5 N°1, P. 92-100, (2004). [Google Scholar]
  6. Y. Kawabata, 2007. Petrological study on evaluating of alkali-silica reactivity and expansion analysis of andesite, Doboku Gakkai Ronbunshuu, e (63), P. 689-703, (2007). [CrossRef] [Google Scholar]
  7. M. Saidi, 2010. Development and Structural Study of Cements Containing Additions of Industrial Waste. European Journal of Scientific Research Vol.40 (2), P. 297-306 (2010). [Google Scholar]
  8. S. Martínez-Ramírez, M.T. Blanco Varela, I. Ereña, M. Gener, Pozzolanic reactivity of zeolitic rocks from two different Cuban deposits: Characterization of reaction products, Applied Clay Science vol. 32, P. 40–52, (2006). [CrossRef] [Google Scholar]
  9. F. Ait Hamou, Etude pétrographique et géochimique du volcanisme d'âge miocène de la région de Hadjout (Ouest Algérois), Thèse de magister en géologie, (1987). [Google Scholar]
  10. G. G. Gvazava, O. I. Chokhonelidze, G. Sh. Kurtanidze, V. I. Kharazishvili, N. D. Natbeladze, Use of Bakury Andesite in the production of dark-green bottles, Glass and Ceramics, vol. 47 N°10, P. 371-374, (1990). [CrossRef] [Google Scholar]
  11. A. DAA, et H.M. El-Kaliouby Utilisation d'andésite dans la transformation des organismes électrocéramiques, Les progrès de la céramique appliquée, vol.106 (3), P. 113-119, (2007). [Google Scholar]
  12. D. Belhai Evolution tectonique de la zone ouest-Algéroise, Approche Stratigraphique et structurale, Thèse de Doctorat d'Etat, USTHB, Algérie, (1996). [Google Scholar]
  13. H. Benali, Les minéralisations associées aux roches magmatiques tertiaires du nord de l'Algérie, Thèse de Doctorat d'Etat, U.S.T.H.B, Algérie, (2003). [Google Scholar]
  14. M. Hamidi Elaboration d'un éco-ciment composé à base d'un ajout andésitique brut et activé, Thèse Docteur ès Sciences, USTO, Oran Algérie, (2014). [Google Scholar]
  15. Norme AFNOR. NF EN 197-1, Cement. Composition, specifications and conformity criteria for common cements, (2011). [Google Scholar]
  16. Norme EN 196-1 Méthodes d'essais des ciments-Partie 1 : Détermination des résistances mécaniques, (2005). [Google Scholar]
  17. IZ. Bribián et al., Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ, 46(5), 1133-40, (2011). [Google Scholar]
  18. JN. De La Vergne The hard rock miner's handbook. 3rd Ed. McIntosh Engineering: North Bay, (2003). [Google Scholar]
  19. C. Hosten, B. Fidan An industrial comparative study of cement clinker grinding systems regarding the specific energy consumption and cement properties. Powder Technol. 221:183-8, (2012). [CrossRef] [Google Scholar]
  20. NA. Madlool et al., A critical review on energy use and savings in the cement industries. Renew Sustainable Energy Rev 15(4): 2042-60, (2011). [Google Scholar]
  21. JA. Moya et al., Pardo N, Mercier A. The potential for improvements in energy efficiency and CO2 emissions in the EU27 cement industry and the relationship with the capital budgeting decision criteria. J Clean Prod 19(11), 1207-15, (2011). [CrossRef] [Google Scholar]
  22. RH. Snow et al., Size reduction and Size Enlargement. In Perry RH, Green DW, editors. Perry's Chemical Engineers, Handbook. 7th Edition. McGraw-Hill, (1997). [Google Scholar]
  23. D. Touil, S. Belaadi, C. Frances Energy efficiency of cement finishes grinding in a dry batch ball mill. Cement Concrete Research, 36(3) : 416-21, (2006). [CrossRef] [Google Scholar]
  24. World Business Council for Sustainable Development (WBCSD). Cement Sustainability Initiative (CSI). Global Cement Database on CO2 and Energy Information, <>. [Google Scholar]
  25. E. Worrell et al., Potentials for energy efficiency improvement in the US cement industry. Energy 25(12) : 1189-214, (2000). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.