Open Access
Issue
MATEC Web Conf.
Volume 148, 2018
International Conference on Engineering Vibration (ICoEV 2017)
Article Number 12002
Number of page(s) 6
Section Nonlinear Effects in Broadband Energy Harvesting from Mechanical Vibrations
DOI https://doi.org/10.1051/matecconf/201814812002
Published online 02 February 2018
  1. Percy S. Knight C. McGarry S. Post A. Moore T. Cavanagh K., Thermal Energy Harvesting for Application at MEMS Scale, Springer, (2014) [Google Scholar]
  2. Hernqvist K.G. Kanefsky M. Norman F.H., Thermionic Energy Converter. RCA Rev. 19, 2 (1958) [Google Scholar]
  3. Sievers R.K. Ivanenok J.F. Hunt T.K. Alkali metal thermal to electric conversion, Mechanical Engineering; 117, 10 (1995) [Google Scholar]
  4. Johnson L.G. Muller J.R. Johnson reversible engine, US Patent, US7160639 B2, (2007) [Google Scholar]
  5. Hossain A. Rashid M.H. Pyroelectric detectors and their applications. IEEE Trans Ind Appl. 27 (1991) [Google Scholar]
  6. Whatmore R.W. Pyroelectric devices and materials. Rep Prog Phys. 49 (1986) [CrossRef] [Google Scholar]
  7. Liang G. Zhou J. Huang X. Analytical model of parallel thermoelectric generator, Applied Energy 88, 12 (2011) [Google Scholar]
  8. Patterson D.Ee Jamison K,D, Durrett M. CVD diamond based miniature stirling cooler International cryocooler conference (2007) [Google Scholar]
  9. Nakajima N. Ogawa K. Fujimasa I. Study on micro engines-miniaturizing Stirlingengines for actuators and heatpumps. Sens Actuators 20, 75–82, (1989) [CrossRef] [Google Scholar]
  10. Rosa R.J. Characteristics of a closed Brayton cycle piston engine, IEEE Western Canada conference on computer, power and communications systems in a rural environment, pp 153–159, (1991) [Google Scholar]
  11. Johnston J.R. Evaluation of expanders for use in a solar-powered Rankine Cycle Heat Engine. Doctoral dissertation, Ohio State University, pp 1–138, (2001) [Google Scholar]
  12. Cho J. Lin C. Richards C Demonstration of an external combustion micro-heat engine. Proc Combust Inst 32, 3099–3105 (2009) [CrossRef] [Google Scholar]
  13. Pierens M. Thermeau J.P. Le Pollès T. Duthil P. Experimental characterization of a thermoacoustic travelling-wave refrigerator. International conference on fluid mechanics, heat transfer and thermodynamics (2011) [Google Scholar]
  14. Ceperley P.H. A Pistonless Stirling Engine—the Traveling Wave Heat Engine.J Acoust Soc Am 66, 1508–1513, (1979) [CrossRef] [Google Scholar]
  15. Swift G.W. Thermoacoustic Engines, J Acoust Soc Am 84 1145 (1988) [CrossRef] [Google Scholar]
  16. Solomon D (1991) Design of a thermomagnetic generator. Energy Convers Manage 31:157–173. [Google Scholar]
  17. Hsu C-J, Sandoval SM, Wetzlar KP, Carman GP (2011) Thermomagnetic conversion efficiencies for ferromagnetic materials. J Appl Phys 110:123923–123927. [Google Scholar]
  18. Bulgrin KE, Ju YS, Carman GP, Lavine AS, (2009) A coupled thermal and mechanical model of a thermal energy harvesting device. ASME 2009 International Mechanical Engineering Congress & Exposition. Lake Buena Vista, Fl, pp 327–335 [Google Scholar]
  19. Otsuka K. Wayman C.M. Shape memory materials,1st edn. Cambridge University Press, Cambridge (1998) [Google Scholar]
  20. Schiller E.H. Heat Engine Driven by Shape Memory Alloys:Prototyping and Design, Master thesis, Virginia Polytechnic Institute (2002) [Google Scholar]
  21. Hochstein P.A. Some Engineering Parameters for a Nitinol Engine Design, Proc. of the Nitinol Heat Engine Conf., Silver Spring, Maryland, (1978) [Google Scholar]
  22. Sandoval D.J. Nitinol Belt Engine, Proc. of the Nitinol Heat Engine Conf., Silver Spring, Maryland, (1978) [Google Scholar]
  23. Kahn H,Huff MA, Heuer AH The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8 213–221 (1998) [CrossRef] [Google Scholar]
  24. Namli O.C. Taya M. Design of piezo-SMA composite for thermal energy harvester under fluctuating temperature, J. Appl. Mech., 78, 8 (2011) [Google Scholar]
  25. Avirovik D. Kumar A. Bodnar R.J. Priya S. Remote light energy harvesting and actuation using shape memory alloy-piezoelectric hybrid transducer, Smart Mater. Struct., 22, 6 (2013) [Google Scholar]
  26. Lebedev G.A. Gusarov B.V. Viala B. Delamare J. Cugat O. Lafont T. Zakharov D.I. Thermal energy harvesting using shape memory alloy piezoelectric composite, in Proc. 16th Int. Solid-State Sens. Actuators Microsyst. Conf. (Transducers’11), Beijing, China, pp. 669–670 (2011) [Google Scholar]
  27. Ralev Y. Todorov T. Modelling of Shape Memory alloys and experimental setup for their investigation, CAx Technologies, 4, (2016) 46-51, [Google Scholar]
  28. Bhargaw H.N. Ahmed M. Sinha P. Thermo-electric behaviour of NiTi shape memory alloy, Trans. Nonferrous Met. Soc. China, 23, (2013) 2329-2335 [CrossRef] [Google Scholar]
  29. Donald J.L. Engineering analysis of smart material systems, Hoboken, New Jersay: John Wiley & Sons, Inc, (2007) 333-350 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.