Open Access
MATEC Web Conf.
Volume 145, 2018
NCTAM 2017 – 13th National Congress on Theoretical and Applied Mechanics
Article Number 01003
Number of page(s) 10
Section General Mechanics
Published online 09 January 2018
  1. M. Brin, G. Stuck, Introduction to dynamical systems (CUP, Cambridge, 2003) [Google Scholar]
  2. S. Nikolov, Ju. Genov, N. Nachev, Mechanics, Transport, Commun. 8, 0472 (2010) [Google Scholar]
  3. L. Shilnikov, A. Shilnikov, D. Turaev, L. Chua, Methods of qualitative theory in nonlinear dynamics (Part II, World Scientific, Singapore, 2001) [Google Scholar]
  4. S. Nikolov, Mechanics, Transport, Commun. 10, 0507 (2012) [Google Scholar]
  5. V. Afraimovich, S. Gonchenko, L. Lerman, A. Shilnikov, D. Turaev., Regular and Chaotic Dynamics 19, 435-460 (2014) [Google Scholar]
  6. R. Driesse, A. Homburg, J. of Differential Equations 246, 2681-2705 (2009) [CrossRef] [Google Scholar]
  7. S. Nikolov, D. Zaharieva, Mechanics, Transport, Commun. 14, 1352 (2016) [Google Scholar]
  8. S. Nikolov, O. Wolkenhauer, J. Vera, Molecular BioSystems 10, 172-179 (2014) [CrossRef] [Google Scholar]
  9. S. Wiggins, Global bifurcations and chaos. Analytical methods (Springer-Verlag, NY, 1988) [Google Scholar]
  10. M. Brack, K. Tanaka, Physical Review E 77, 046205 (2008) [CrossRef] [Google Scholar]
  11. G. Villasi, Hamiltonian dynamics (World Scientific, Singapore, 2001) [Google Scholar]
  12. J. Lowenstein, Essentials of Hamiltonian dynamics (CUP, NY, 2012) [Google Scholar]
  13. H. Hansmann, Local and semi-local bifurcations in Hamiltonian dynamical systems (Springer, Berlin, 2007) [Google Scholar]
  14. H. Poincare, Les methodes nouvelles de la mecanique celeste, 1-3 (Gauthier-Villars, 1892; 1893; 1899) [Google Scholar]
  15. R. MacKay, J. Meiss, Hamiltonian dynamical systems (Adam Hulger, Boston, 1987). [Google Scholar]
  16. V. Arnold, Mathematical methods of classical mechanics (Springer-Verlag, Heidelberg, 1978) [Google Scholar]
  17. V. Gelfreich, D. Sharomov, Physics Letters A, 197, 139-146 (1995) [CrossRef] [Google Scholar]
  18. A. Ivanov, J. of Physics A 34, 11011-11031 (2001) [CrossRef] [Google Scholar]
  19. G. Van Der Heijden, K. Yagasaki, Z. Angew. Math. Phys. 65, 221-240 (2014) [Google Scholar]
  20. A. King, A., J. Billingham, S. Otto, Differential equations. Linear, nonlinear, ordinary, partial (Cambridge University Press, NY, 2003) [Google Scholar]
  21. H. Josephs, R. Huston, Dynamic of mechanical systems (CRC Press, NY, 2002) [Google Scholar]
  22. G. Murphy, Ordinary differential equations and their solutions (Van Nostrand, NY, 1960) [Google Scholar]
  23. D. Zwillinger, Handbook of differential equations (Academic Press, NY, 1997) [Google Scholar]
  24. G. Baker, J. Blackburn, The pendulum. A case study in physics (Oxford University Press, NY, 2005) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.