Open Access
Issue
MATEC Web Conf.
Volume 142, 2018
International Conference on Materials Applications and Engineering 2017 (ICMAE2017)
Article Number 01001
Number of page(s) 9
Section Chemical Materials and Chemical Syntheses
DOI https://doi.org/10.1051/matecconf/201814201001
Published online 08 January 2018
  1. R. L. Courtney, L. A. Harrah, Organic Hydrogen Getters Part I: Introductory Report, SLA(1974) [CrossRef] [Google Scholar]
  2. R. D. Anderson, R. L. Courtney, L. A. Harrah, Low temperature, low pressure hydrogen gettering. U.S. Patent 3896042 [Google Scholar]
  3. R. M. Balooch, W. E. Wang, J. D. LeMay, Thermochemical properties of the hydrogen getter DEB, Journal of Nuclear Materials, 270, 248-252 (1999) [CrossRef] [Google Scholar]
  4. M. Stone, M. Benson, C. Orme, et al. Improved Hydrogen Gas Getters for TRU Waste, INEEL/EXT-02-00564, (2002) [Google Scholar]
  5. G. Mroz, Test plan for hydrogen getters project-phase II, LA-UR-99-1219, (1999) [CrossRef] [Google Scholar]
  6. C. A. Colmenares, R. G. Garza, Equilibrium vapor pressures of the hydrogen getters DPB and DPPE. UCRL-85972, (1981) [Google Scholar]
  7. G. L. Powell, Hydriding kinetics of an organic hydrogen getter-DPB, Journal of Alloys and Compounds, 446-447: 402–404(2007) [CrossRef] [Google Scholar]
  8. M. Balooch, W. E. Wang, J. R. Kirkpatrick, Hydrogen uptake mechanism of a siliconerubber DEB getter mixture, Journal of Polymer Science: Part B: Polymer Physics, 39, 425-431 (2001) [CrossRef] [Google Scholar]
  9. Hai Zhenwei, Tang Jiansheng, Gao Zhenheng, Studies on 1,4-Bis (Phenyl Ethynyl) Benzene and Its Bis Substituted Phenyl Derivatives, chemical journal of Chinese universities, 11(6): 586-590 (1990) [Google Scholar]
  10. P. Nguyen, Synthesis of symmetric 1,4-bis(p-R-phenylethynyl)benzenes via palladium/copper catalyzed cross coupling and comments on the coupling and comments on the coupling of aryl halides with terminal alkynes, Inorganica Chimica Acta, 220, 289-296(1994) [CrossRef] [Google Scholar]
  11. K. VSalazar, D. W. Carroll, M. Trkula, et al. Hydrogen uptake on film surfaces produced by a unique codeposition process, Applied Surface Science, 214, 20-26(2003) [CrossRef] [Google Scholar]
  12. D. W. Carroll, D. R. Pesiri, K. VSalazar, et al. Codeposition of the DEB-Palladium hydrogen getter system, LA-UR-00-3067, (2000) [Google Scholar]
  13. J. P. Kaszuba, E. Peterson,E. Mroz, et al. Development of Hydrogen Gas Getters for TRU Waste, WM-4237, WM'04 Conference, (2004) [Google Scholar]
  14. R. L. Holtz, V. Provenzano, M. A. Imam. Overview of Nanophase Metals and Alloys for Gas Sensors, Getters, and Hydrogen Storage, Nanostructured Materials, 7, 259-264(1996) [CrossRef] [Google Scholar]
  15. L. Rodrigo, J. A. Sawicki, R. E. Johnson, Characterization of Deactivated Metal Getters Used in a Glove Box Purification System, Fusion Science & Technology, 28, 1410-1415(1995) [CrossRef] [Google Scholar]
  16. T. A. Giorgi, B. Ferrario, B. Storey, An Updated Review of Getters and Bettering, J. Vat. Sci. Technol., 3, 417-423(1985) [CrossRef] [Google Scholar]
  17. F. A. Cotton, G. Wilkinson, Transition-Metal Hydrides, Advanced Inorganic Chemistry, 3rd Edition, Interscience Publishers, New York, 186-187(1972) [Google Scholar]
  18. J. O. Henrie, D. J. Flesher, G. J. Quinn, et al. Hydrogen Control in the Handling, Shipping, and Storage of Wet Radioactive Waste, GEND-052, U.S. Department of Energy, (1986) [Google Scholar]
  19. C. Carpetis. Hydrogen-Ttitium Getters and Their Applications, KCP-613-4410, Allied-Signal Aerospace Co., (1990) [Google Scholar]
  20. F. A. Lewis, The Palladium-Hydrogen System, Academic Press, (1967) [Google Scholar]
  21. L. K. Heung, Tritium Transport Vessel Using Depleted Uranium, Fusion Tech., 28, 1385-1390(1995) [Google Scholar]
  22. U. Tamm, E. Hutter, G. Neffe, et al. Uranium Getters for Tritium Cleanup at the Tritium Laboratory Karlsruhe (TLK), Fusion Tech., 21, 983-987(1992) [Google Scholar]
  23. M. Devillers, M. Sirch, S. Bredendiek-Kamper, et al. Characterization of the ZrCo-Hydrogen System in View of Its Use for Tritium Storage, Chem. Mater., 2, 255-262(1990) [CrossRef] [Google Scholar]
  24. T. Woyke, C. Schiller, U. Schmidt, et al. ZrCo as a New H2 Storage and Getter for Lyman-α Radiation Sources, Appl. Optics, 34, 155-158(1995) [CrossRef] [Google Scholar]
  25. R. D. Penzhorn, M. Devillers, M. Sirch, Evaluation of ZrCo and Other Getters for Tritium Handling and Storage, J Nucl. Mater., 170, 217-231(1990) [CrossRef] [Google Scholar]
  26. G. Bonizzoni, A. Conte, G. Gatto, et al. Tritium Storage Plant Based on a Combination of St707 and St737 Getter Alloy Beds for High Field Fusion Machines, Vacuum, 41, 1500-1502(1990) [CrossRef] [Google Scholar]
  27. F. Doni, C. Boffito, F. Farrario, Hydrogen Isotope Sorption and Recovery by a Nonevaporable Getter Combined with a Chemical Compressor Material, J Vat. Sci. Tech., 4, 2447-2451(1986) [CrossRef] [Google Scholar]
  28. A. N. Perevezentsev, A. C. Bell, R. Lalsser, et al. Safety Aspects of Tritium Storage in Metal Hydride Form, Fusion Technology, 28, 1404-1409(1995) [CrossRef] [Google Scholar]
  29. S. Srivatava, O. N. Srivastava, Synthesis, Characterization and Hydrogenation Behavior of Composite Hydrogen Storage Alloys, LaNi5/La2Ni7, LaNi3, Journal of Alloys & Compounds, 281, 197-205(1999) [CrossRef] [Google Scholar]
  30. A. Chambers, C. Park, R. T. K. Baker, et al. Hydrogen Storage in Graphite Nanofibers[J], J. Phys. Chem. B, 102, 4253-4257(1998) [CrossRef] [Google Scholar]
  31. F. Diederich, F. L. Whetten, C60: From Soot to Superconductor, Angew. Chem. Int. Ed., 30, 678-683(1991) [CrossRef] [Google Scholar]
  32. M. Sane, H. Nishimura, K. Ichimura, Dissociation of Hydrogen Molecules by a First-Stage Graphite-Caesiurn Intercalation Compound, Synthetic Metals, 31, 73-78(1989) [CrossRef] [Google Scholar]
  33. K. Ichimura, M. Sano, Gettering of Hydrogen and Oxygen by Alkali-Metal Graphite Intercalation Compounds, Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 10, 543-546(1992) [CrossRef] [Google Scholar]
  34. K. Janberg, F. Petrucci. Dry Storage in Casks at the Site of Super-Phenex-The Special Problem of the Tritium Getter-Process Within a Transport and Storage Cask Filled With Absorber Rods[J], in the Proceedings of ICEM'95, 1, 285-287(1995) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.