Open Access
MATEC Web Conf.
Volume 139, 2017
2017 3rd International Conference on Mechanical, Electronic and Information Technology Engineering (ICMITE 2017)
Article Number 00060
Number of page(s) 5
Published online 05 December 2017
  1. Saxena A, Driemeyer J, Kearns J, et al. Robotic grasping of novel objects[C]// Advances in neural information processing systems. 2007: 1209–1216. [Google Scholar]
  2. Le Q V, Kamm D, Kara A F, et al. Learning to grasp objects with multiple contact points[C]// Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2010: 5062–5069. [Google Scholar]
  3. Jiang Y, Moseson S, Saxena A. Efficient grasping from rgbd images: Learning using a new rectangle representation[C]// Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011: 3304–3311. [CrossRef] [Google Scholar]
  4. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]// Advances in neural information processing systems. 2012: 1097–1105. [Google Scholar]
  5. Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580–587. [Google Scholar]
  6. Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps[J]. The International Journal of Robotics Research, 2015, 34(4-5): 705–724. [Google Scholar]
  7. Wei J, Liu H, Yan G, et al. Robotic grasping recognition using multi-modal deep extreme learning machine[J]. Multidimensional Systems and Signal Processing, 2017, 28(3): 817–833. [CrossRef] [Google Scholar]
  8. Trottier L, Giguère P, Chaib-draa B. Dictionary Learning for Robotic Grasp Recognition and Detection[J]. arXiv preprint arXiv:1606.00538, 2016. [Google Scholar]
  9. Redmon J, Angelova A. Real-time grasp detection using convolutional neural networks[C]// Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE, 2015: 1316–1322. [CrossRef] [Google Scholar]
  10. Kurzejamski G, Zawistowski J, Sarwas G. Robust method of vote aggregation and proposition verification for invariant local features[J]. arXiv preprint arXiv:1601.00781, 2016. [Google Scholar]
  11. Hsiao E, Collet A, Hebert M. Making specific features less discriminative to improve point-based 3D object recognition[C]// Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010: 2653–2660. [CrossRef] [Google Scholar]
  12. Yi Z, Li Y, Gong M. An Efficient Algorithm for Feature-Based 3D Point Cloud Correspondence Search[C]// International Symposium on Visual Computing. Springer International Publishing, 2016: 485–496. [Google Scholar]
  13. Tychsen-Smith L, Petersson L. DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling[J]. arXiv preprint arXiv:1703.10295, 2017. [Google Scholar]
  14. Song S, Xiao J. Deep sliding shapes for amodal 3D object detection in RGB-D images[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 808–816. [Google Scholar]
  15. Kehl W, Tombari F, Navab N, et al. Hashmod: a hashing method for scalable 3D object detection[J]. arXiv preprint arXiv:1607.06062, 2016. [Google Scholar]
  16. Guo D, Sun F, Kong T, et al. Deep vision networks for real-time robotic grasp detection[J]. International Journal of Advanced Robotic Systems, 2016, 14(1): 1729881416682706. [Google Scholar]
  17. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. [Google Scholar]
  18. Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. arXiv preprint arXiv:1606.00915, 2016. [Google Scholar]
  19. Lee C C, Chiang Y C, Shih C Y, et al. Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques[J]. Expert Systems with Applications, 2009, 36(3): 4717–4724. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.