Open Access
Issue
MATEC Web Conf.
Volume 135, 2017
8th International Conference on Mechanical and Manufacturing Engineering 2017 (ICME’17)
Article Number 00058
Number of page(s) 10
DOI https://doi.org/10.1051/matecconf/201713500058
Published online 20 November 2017
  1. S. Sanei, J.A. Chambers, EEG Signal Processing, hal.12, UK: John Wiley&Sons, Ltd (2007) [CrossRef] [Google Scholar]
  2. A. Jafarifarmand, M.A. Badamchizadeh, Artefacts removal in EEG signal using a new neural network enchanced adaptive filter, Neurocomputing 103 (2013) 222-231 [CrossRef] [Google Scholar]
  3. S.O. Regan, S. Faul, W. Marnane, Automatic detection of EEG artefacts arising from head movements using EEG and gyroscope signals, Medical Engineering&Physics 35 (2013) 867-874 [Google Scholar]
  4. D. Looney, L. Li, T.M. Rutkowski, D.P. Mandic, A. Cichocki, Ocular Artefacts removal from EEG using EMD [Google Scholar]
  5. M. Fatourechi, Ali Bashashati, Rabab K.Ward, Gary E.Birch, EMG and EOG artefacts in brain computer interface system: A survey, Clinical neurophysiology 118 (2007) 480-494 [CrossRef] [Google Scholar]
  6. T. Gasser, J. C. Schuller, U. S. Gasser, Correction of muscle artefacts in the EEG power spectrum, Clinical Neurophysiology 116 (2005) 2044-2050 [CrossRef] [Google Scholar]
  7. M. T. Akhtar, W. Mitsuhashi, C. J. James, Employing spatially constrained ICA and wavelet denoising, for automatic removal or artefacts from multichannel EEG data, Signal processing 92 (2012) 401-416 [CrossRef] [Google Scholar]
  8. H.-A. T. Nguyen, J. Musson, F. Li, W. Wang, EOG artifact removal using a wavelet neural network, Neurocomputing 97 (2012) 374-389 [CrossRef] [Google Scholar]
  9. M.V.D. Velde, G. V. Erp, P. J. M. Cluitmans, Detection of muscle artefact in the normal human awake EEG, Electroencepalography and clinical neurophysiology 107 (1998) 149-158 [CrossRef] [Google Scholar]
  10. P. K. Sadasivan, D. N. Dutt, Minimization of EOG artefacts from corrupted EEG signals using neural network approach, Compt. Biol. Med. Vol. 24 No.6 pp 441-449 (1994) [CrossRef] [Google Scholar]
  11. S. Olbrich, J. Jodicke, C. Sander, H. Himmerich, U. Hegeri, “ICA-based muscle artefact correction of EEG data:What is muscle and what is brain? Comment on McMenamin et al, Neuroimage 54 (2011) 1-3 [CrossRef] [Google Scholar]
  12. A. Turnip, K. S. Hong, Classifying Mental Activities From EEG-p300 Signals using Adaptive Neural Network, International Journal of Innovative Computing, Information and Control.,vol 8, No.9 (2012) [Google Scholar]
  13. P. S. Kumar, R. Arumuganathan, K. Sivakumar, C. Vimal, An adaptive method to remove ocular artefacts from EEG signals using wavelet transform, journal of applied science research, 5(7): 741-745 (2009) [Google Scholar]
  14. C. E. Bire, B. Cahyono, Denoising pada citra menggunakan transformasi wavelet (2012) [Google Scholar]
  15. M.Z.B. Mohamad, “Denoising of an experimental acoustic emission (AE) data using one dimensional (1-D) Wavelet Packet Analysis (2009) [Google Scholar]
  16. J.-A. Jiang, C.-F. Chao, M.-J. Chiu, R.-G. Lee, An automatic analysis method for detecting and eliminating ECG artefacts in EEG, computers in biology and medicine 37 (2007) 1600-1671 [CrossRef] [Google Scholar]
  17. W.-Y. Hsu, C.-H. Lin, H.-J. Hsu, P.-H. Chen, I-R. Chen, Wavelet-based envelope features with automatic EOG artifact removal: application to single-trial EEG data, expert system with application 39 (2012) 2743-2749 [CrossRef] [Google Scholar]
  18. O. A. Rosso, M. T. Martin, A. Figliola, K. Keller, A. Plastino, EEG analysis using wavelet-based information tools, journal of neuroscience methods 153 (2006) 163-182 [CrossRef] [PubMed] [Google Scholar]
  19. H. Leung, K. Schindler, A. Y. Y. Chan, A. Y. L. Lau, K. L. Leng, Waveletdenoising of electroencephalogram and the absolut slope method: A new tool to improve electroencephalographic localization and lateralization, clinical neurophysiology 120 (2009) 1273-1281 [CrossRef] [Google Scholar]
  20. R. Quian Quiroga, H. Garcia Single-trial event-related potentials with wavelet denoising, clinical neurophysiology 114 (2003) 376-390 [CrossRef] [Google Scholar]
  21. L. Pasti, B. Walczak, D. L. Massart, P. Reschiglian, Optimization of signal denoising in discrete wavelet transform, chemometrics and intelligent laboratory systems 48 (1999) 21-34 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.