Open Access
Issue
MATEC Web Conf.
Volume 131, 2017
UTP-UMP Symposium on Energy Systems 2017 (SES 2017)
Article Number 04014
Number of page(s) 6
Section Economic, environmental, social and policy aspects of energy
DOI https://doi.org/10.1051/matecconf/201713104014
Published online 25 October 2017
  1. J. Xu, Y. Wang and L. Xu, PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data. IEEE Sensors Journal, 2014. 14(4): p. 1124–1132. [CrossRef] [Google Scholar]
  2. A. Heng, S. Zhang, A. C. Tan and J. Mathew, Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical systems and signal processing, 2009. 23(3): p. 724–739. [CrossRef] [Google Scholar]
  3. M. Boyce, Gas turbine engineering handbook. 3rd, Third ed. (Gulf Professional Publishing, 2006). [Google Scholar]
  4. T. A. Lemma, F. M. Hashim and M. A. B. A. Majid, An integrated approach to industrial gas turbine diagnostics and reliability montoring. 2006. [Google Scholar]
  5. H. Hanachi, J. Liu, A. Banerjee, Y. Chen and A. Koul, A physics-based modeling approach for performance monitoring in gas turbine engines. IEEE Transactions on Reliability, 2015. 64(1): p. 197–205. [CrossRef] [Google Scholar]
  6. A. K. Jardine, D. Lin and D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 2006. 20(7): p. 1483–1510. [Google Scholar]
  7. W. Hu, J. Liu, J. Cui, Y. Gao, B. Cui and L. Jiang, Fault diagnosis of gas turbine based on support vector machine. in Control and Decision Conference (2014 CCDC), The 26th Chinese. 2014. IEEE. [Google Scholar]
  8. P. G. Nieto, E. Garcia-Gonzalo, F. S. Lasheras and F. J. de Cos Juez, Hybrid PSO.SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliability Engineering & System Safety, 2015. 138: p. 219–231. [CrossRef] [Google Scholar]
  9. D. Zhou, H. Zhang, and S. Weng, A New Gas Path Fault Diagnostic Method of Gas Turbine Based on Support Vector Machine. Journal of Engineering for Gas Turbines and Power, 2015. 137(10): p. 102605-102605-6. [CrossRef] [Google Scholar]
  10. A. Cavarzere and M. Venturini, Application of Forecasting Methodologies to Predict Gas Turbine Behavior Over Time. Journal of Engineering for Gas Turbines and Power, 2012. 134(1): p. 012401. [CrossRef] [Google Scholar]
  11. M. A. Zaidan, R. F. Harrison, A. R. Mills and P. J. Fleming, Bayesian hierarchical models for aerospace gas turbine engine prognostics. Expert Systems with Applications, 2015. 42(1): p. 539–553. [CrossRef] [Google Scholar]
  12. J. Sun, H. Zuo, W. Wang and M. G. Pecht, Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance. Mechanical Systems and Signal Processing, 2012. 28: p. 585–596. [CrossRef] [Google Scholar]
  13. M. Tahan, M. Muhammad, and Z.A. Karim, A multi-nets ANN model for real-time performance-based automatic fault diagnosis of industrial gas turbine engines. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017: p. 1-12. [Google Scholar]
  14. M.B. Rahmoune, A. Hafaifa, and M. Guemana, Fault diagnosis in gas turbine based on neural networks: Vibrations Speed Application, in Advances in Acoustics and Vibration. 2017, Springer. p. 1–11. [Google Scholar]
  15. M.A. Ghafir, Y. Li, and L. Wang, Creep life prediction for aero gas turbine hot section component using artificial neural networks. Journal of Engineering for Gas Turbines and Power, 2014. 136(3): p. 031504. [CrossRef] [Google Scholar]
  16. M.F. Abdul Ghafir, Y.G. Li, and L. Wang, Creep Life Prediction for Aero Gas Turbine Hot Section Component Using Artificial Neural Networks. Journal of Engineering for Gas Turbines and Power, 2013. 136(3): p. 031504-031504-9. [Google Scholar]
  17. J. Ma, Q. Wang, G. Li and D. Zhou, Reconstruction-based fault prognosis for flue gas turbines with independent component analysis. Asia-Pacific Journal of Chemical Engineering, 2014. 9(2): p. 205–213. [CrossRef] [Google Scholar]
  18. Y. Li, Y., Gas turbine performance and health status estimation using adaptive gas path analysis. Journal of Engineering for Gas Turbines and Power, 2010. 132(4): p. 041701. [CrossRef] [Google Scholar]
  19. George, V., et al., Intelligent fault diagnosis and prognosis for engineering systems. 2006, John Wiley & Sons, Inc. [Google Scholar]
  20. A.D. Fentaye, S.I.U.-H. Gilani, and A.T. Baheta. Gas turbine gas path diagnostics: A review. in MATEC Web of Conferences. 2016. EDP Sciences. [Google Scholar]
  21. J. Yan, Machinery prognostics and prognosis oriented maintenance management. 2014: John Wiley & Sons. [Google Scholar]
  22. S. Araghinejad, Data-driven modeling: using MATLAB® in water resources and environmental engineering. Vol. 67. 2013: Springer Science & Business Media. [Google Scholar]
  23. D.K. Frederick, J.A. DeCastro, and J.S. Litt, User's guide for the commercial modular aero-propulsion system simulation (C-MAPSS). 2007. [Google Scholar]
  24. A. Saxena, K. Goebel, Turbofan Engine Degradation Simulation Data Set. NASA Ames Prognostics Data Repository, 2008. [Google Scholar]
  25. A. Saxena, K. Goebel, Damage propagation modeling for aircraft engine run-to-failure simulation. in Prognostics and Health Management, 2008. PHM 2008. International Conference on. 2008. IEEE. [Google Scholar]
  26. R. Shibata., Selection of the Order of an Autoregressive Model by Akaike's Information Criterion. Biometrika, 1976. 63(1): p. 117–126. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.