Open Access
MATEC Web Conf.
Volume 131, 2017
UTP-UMP Symposium on Energy Systems 2017 (SES 2017)
Article Number 03006
Number of page(s) 11
Section Energy management and conservation
Published online 25 October 2017
  1. M. S. Onn, A. A. Seman, Z. Kassim, and M. A. Esa, “CO2 Separation from Natural Gas Through Hydrate Formation,” (2014). [Google Scholar]
  2. R. A. Samawe, K. Rostani, A. Mohd Jalil, M. Esa, and N. Othman, “Concept Proofing of upersonic Nozzle Separator for CO2 Separation from Natural Gas using a Flow Loop,” (2014). [Google Scholar]
  3. S. Kong, J. Liu, L. Zhao, P. Cai, and Y. Huang, “Study of CO2 Separation Characteristic in Supersonic High-Pressure Vortex Tube,” in Materials for Renewable Energy & Environment (ICMREE), 2011 International Conference on, (2011), pp. 936-940. [Google Scholar]
  4. T. González, M. Netušil, and P. Ditl, “Raw Gas Dehydration on Supersonic Swirling Separator,” Czasopismo Tech. Mech. J., vol. 109, (2012). [Google Scholar]
  5. C. Wen, X. Cao, J. Zhang, and L. Wu, “Three-dimensional Numerical Simulation of the Supersonic Swirling Separator,” in The Twentieth International Offshore and Polar Engineering Conference, (2010). [Google Scholar]
  6. C. Wen, X. Cao, Y. Yang, and J. Zhang, “Effects of Swirls on Natural Gas Flow in Supersonic Separators,” in The Twenty-first International Offshore and Polar Engineering Conference, (2011). [Google Scholar]
  7. F. T. Okimoto and J. M. Brouwer, “Supersonic Gas Conditioning,” vol. 223 (2002). [Google Scholar]
  8. H. C. Man, J. Duan, and T. M. Yue, “Design and Characteristic Analysis of Supersonic Nozzles for High Gas Pressure Laser Cutting,” J. Mater. Process. Technol., vol. 63, pp. 217–222, (1997). [CrossRef] [Google Scholar]
  9. C. Wen, X. Cao, and Y. Yang, “Swirling Flow of Natural Gas in Supersonic Separators,” Chem. Eng. Process., vol. 50, pp. 644–649, (2011). [CrossRef] [Google Scholar]
  10. C. Wen, X. Cao, Y. Yang, and Y. Feng, “Prediction of Mass Flow Rate in Supersonic Natural Gas Processing,” Oil Gas Sci. Technol.- Rev. IFP. J., vol. 70, pp. 1101–1109, (2013). [CrossRef] [EDP Sciences] [Google Scholar]
  11. C. Wen, X. Cao, Y. Yang, and J. Zhang, “Supersonic Swirling Characteristics of Natural Gas in Convergent-Divergent Nozzles,” Pet. Sci. J., vol. 8, pp. 114–119, (2011). [CrossRef] [Google Scholar]
  12. C. Wen, Y. Feng, X. Cao, Y. Yang, and P. Witt, “Effects of Operating Parameters on Flow Characteristics of Natural Gas in Supersonic Separators,” in Offshore Technology Conference, (2013). [Google Scholar]
  13. C. Wen, Y. Feng, P. Witt, X. Cao, and Y. Yang, “CFD Simulation of Supersonic Swirling Separation of Natural Gas Using a Delta Wing,” in Proceedings of the Ninth International Conference on CFD in the Minerals and Process Industries, (2012). [Google Scholar]
  14. Y. Yang, C. Wen, S. Wang, Y. Feng, and P. Witt, “The Swirling Flow Structure in Supersonic Separators for Natural Gas Dehydration,” RSC ADV J., vol. 4, pp. 52967–52972, (2014). [CrossRef] [Google Scholar]
  15. K. Foelsch, “The Analytical Design of an Axially Symmetric Laval Nozzle for a Parallel and Uniform Jet,” J. Aeronaut. Sci., (2012). [Google Scholar]
  16. M. Betting, T. V. Holten, and J. M. H. M. V. Veen, “Supersonic Separator Apparatus and Method,” US Patent US 20020194988A1, (2002). [Google Scholar]
  17. B. Prast, R. A. van Dam, J. F. H. Willems, and M. E. H. van Dongen, “Formation of Nano-Sized Water Droplets in a Supersonic Expansion Flow,” J. Aerosol Sci, vol. 27, pp. S147–S148, (1996). [CrossRef] [Google Scholar]
  18. P. Schinkelshoek and H. Epsom, “Supersonic Gas Conditioning-Low Pressure Drop Twister for NGL Recovery,” (2006). [Google Scholar]
  19. F. T. Okimoto, S. Sibani, and M. Lander, “Twister Supersonic Gas Conditioning Process,” (2002). [Google Scholar]
  20. B. Prast, P. Schinkelshoek, B. Lammers, and M. Betting, “CFD for Supersonic Gas Processing,” in NEL Multiphase Separation and Multiphase Pumping Technologies Conference, (2005), pp. 53-58. [Google Scholar]
  21. M. Haghighi, K. A. Hawboldt, and M. A. Abdi, “Supersonic Gas Separators: Review of Latest Developments,” J NAT GAS SCI ENG, vol. 27, pp. 109–121, (2015). [CrossRef] [Google Scholar]
  22. V. Alfyorov, L. Bagirov, L. Dmitriev, V. Feygin, S. Imayev, and J. R. Lacey, “Supersonic Nozzle Efficiently Separates Natural Gas Components,” Oil Gas J., vol. 103, pp. 53–58, (2005). [Google Scholar]
  23. R. L. Garrett, “Supersonic Flow Seprator,” US Patent 3559373, (1971). [Google Scholar]
  24. S. Keisuk, “Separation of Gaseous Mixtures,” Japan Patent JPH0217-921A, (1990). [Google Scholar]
  25. V. Holten, “Method and Device for Separating a Gas from a Gas Mixture,” (1992). [Google Scholar]
  26. A. Borissov, G. Mirzoev, and V. Shtern, “Supersonic Swirling Separator 2 (Sustor2),” ed: Google Patents, (2014). [Google Scholar]
  27. C. Wen, Y. Yang, and W. Jiang, “Supersonic Expansion Refrigeration and Cyclone Separation Device for Natural Gas,” (2012). [Google Scholar]
  28. L. Hengwei, L. Zhonggliang, F. Yongxun, G. Keyu, and Y. Tingmin, “Characteristic of a Supersonic Swirling Dehydration System of Natural Gas,” Chin. J. Chem. Eng., vol. 13, pp. 9–12, (2005). [Google Scholar]
  29. Z. Liu, J. Ding, W. Jiang, J. Zhang, and Y. Feng, “Numerical Simulation of Highly-Swirling Supersonic Flow Inside a Laval Nozzle,” PROG COMPUT FLUID DY, vol. 8, pp. 536–540, (2008). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.