Open Access
MATEC Web Conf.
Volume 131, 2017
UTP-UMP Symposium on Energy Systems 2017 (SES 2017)
Article Number 03001
Number of page(s) 9
Section Energy management and conservation
Published online 25 October 2017
  1. Movellan, J., The 2016 Global PV Outlook: US, Asian Markets Strengthened by Policies to Reduce CO2. 2016. [Google Scholar]
  2. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050–6051. [Google Scholar]
  3. Saliba, M., et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 2016. 9(6): p. 1989–1997. [CrossRef] [Google Scholar]
  4. Manshor, N.A., et al., Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Physical Chemistry Chemical Physics, 2016. 18(31): p. 21629–21639. [CrossRef] [Google Scholar]
  5. Fakharuddin, A., et al., Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano, 2015. 9(8): p. 8420–8429. [CrossRef] [Google Scholar]
  6. Liu, D., J. Yang, and T.L. Kelly, Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency. Journal of the American Chemical Society, 2014. 136(49): p. 17116–17122. [CrossRef] [Google Scholar]
  7. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395–398. [CrossRef] [PubMed] [Google Scholar]
  8. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622–625. [CrossRef] [Google Scholar]
  9. Zhou, H., et al., Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542. [CrossRef] [Google Scholar]
  10. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341. [Google Scholar]
  11. Wang, Q., et al., Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy & Environmental Science, 2014. 7(7): p. 2359–2365. [CrossRef] [Google Scholar]
  12. Roldan-Carmona, C., et al., High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy & Environmental Science, 2015. 8(12): p. 3550–3556. [CrossRef] [Google Scholar]
  13. Kim, J., C.-H. Chung, and K.-H. Hong, Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Physical Chemistry Chemical Physics, 2016. 18(39): p. 27143–27147. [CrossRef] [Google Scholar]
  14. Mosconi, E., P. Umari, and F. De Angelis, Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis. Physical Chemistry Chemical Physics, 2016. 18(39): p. 27158–27164. [CrossRef] [Google Scholar]
  15. Carignano, M.A., et al., A close examination of the structure and dynamics of HC(NH2)2PbI3 by MD simulations and group theory. Physical Chemistry Chemical Physics, 2016. 18(39): p. 27109–27118. [CrossRef] [Google Scholar]
  16. He, Y. and G. Galli, Instability and Efficiency of Mixed Halide Perovskites CH3NH3AI3–xClx (A = Pb and Sn): A First-Principles, Computational Study. Chemistry of Materials, 2017. 29(2): p. 682–689. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.