Open Access
Issue
MATEC Web Conf.
Volume 128, 2017
2017 International Conference on Electronic Information Technology and Computer Engineering (EITCE 2017)
Article Number 01014
Number of page(s) 8
Section Signal & Image Processing
DOI https://doi.org/10.1051/matecconf/201712801014
Published online 25 October 2017
  1. Moreira A., et al.. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013 1 (1):6–43. [CrossRef] [Google Scholar]
  2. Yun-kai Deng, Zhao Feng-jun, Yu Wang. Development trend and application of spaceborne SAR Technology[J]. Journal of Radar, 2012 1 (1):1–9. [CrossRef] [Google Scholar]
  3. Jin-song Chong, Yue Ouyang, Min-hui Zhu. Detection of ocean target in synthetic aperture radar imagery[M]. Ocean Publishing Firm, 2006. [Google Scholar]
  4. Xiang-wei Xing, Ke-feng Ji, et al.. Review of ship surveillance technologies based on high-resoluion wide-swath synthetic aperture radar imaging[J]. Journal of Radar, 2015 4 (1):107–121. [Google Scholar]
  5. You He, Jian Guan, Ying-ning Peng. Automatic radar detection and constant false alarm rate processing[M]. Tsinghua University Press, 1999. [Google Scholar]
  6. L. Gagnon, H. Oppenheim and P. Valin. R & D activities in airborne SAR image processing/analysis at Lockheed Martin Canada[C]. Proceeding of SPIE 998–1003. [Google Scholar]
  7. Kazuo Ouchi, Tamaki Shinsuke, Yaguchi Hidenobu and Iehara Masato. Ship Detection Based on Coherence Images Derived From Cross Correlation of Multilook SAR Images[J]. IEEE Geoscience and Remote Sensing Letters, 2004 1 (3):184–187. [CrossRef] [Google Scholar]
  8. Xiang-wei Xing, Ke-feng Ji, Huan-xin Zou, et al.. Feature selection and weighted SVM classifier based ship detection in PolSAR imagery[J]. International Journal of Remote Sensing, 2013, 34 (22): 7925–7944. [CrossRef] [Google Scholar]
  9. Gui Gao. A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images. IEEE Geoscience and Remote Sensing Letters, 2011 8 (3): 557–561. [CrossRef] [Google Scholar]
  10. Wang. C, Jiang S F, Zhang H., et al.. Ship detection for high-resolution SAR images based on feature analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2014 11 (1):119–123. [CrossRef] [Google Scholar]
  11. Li-cheng Jiao, Xiang-rong Zhang, Biao Hou, et al.. Intelligent SAR image processing and interpretation [M]. Science Press, 2007. [Google Scholar]
  12. Gao D., Han S., Vasconcelos N. Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2009 31 (6): 989–1005. [CrossRef] [Google Scholar]
  13. Hou X and Zhang L. Saliency detection: a spectral residual approach[C]. Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, Minnesota, USA, 2007: 1–8. [Google Scholar]
  14. Juan Wang, Lin-lin Ci, Kang-ze Yao. Research of feature selection methods[J]. Computer Engineering and Science, 2005 27 (12): 68–71. [Google Scholar]
  15. Harm G. Developments in detection algorithms at JRC[C]. The Third Meeting of the DECLIMS Project, Vancouver, BC, 2004: 1–7. [Google Scholar]
  16. Achanta R., Estrada F., Wils P., et al.. Salient region detection and segmentation[C]. Proceedings of the 6th International Conference on Computer Vision Systems (ICVS 2008), Santorini, Greece, 2008: 66–75. [Google Scholar]
  17. Zhi-long Zhang, Wei-ping Yang, Yan Zhang, et al.. Ship Detection in Infrared Remote Sensing Images Based on Spectral Residual Transform[J]. Journal of Electronics & Information Technology, 2015. 2 (3):15–24. A. Mecke, I. Lee, J.R. Baker jr., M.M. Detection of ocean target in synthetic aperture radar Banaszak Holl, B.G. Orr, Eur. Phys. J. E 14, 7 (2004) imagery[M]. Ocean Publishing Firm, 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.