Open Access
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
Article Number 05008
Number of page(s) 7
Section Signal Processing
Published online 04 October 2017
  1. E. J. S. Luz, W. R. Schwartz, G. C. Chavez and D. Menotti, “ECG-based Heartbeat Classification for Arrhythmia Detection: A Survey“, in proceeding of Computer Methods and Programs in Biomedicine, Vol. 127, pp 2–22, April 2016. [Google Scholar]
  2. A. Kaushik and P. Sabherwal, “Monitoring Electrocardiogram using Android based Smart phone“, in preceding of Annual IEEE India Conference (INDICON), pp 1–6, 2015. [Google Scholar]
  3. S. Balakrishnama, A. Ganapathiraju, “Linear discriminant analysis-a brief tutorial“, in Institute for Signal and information Processing, vol. 18, pp. 1–8, 1998. [Google Scholar]
  4. M. H. Hayes, “Statistical Digital Signal Processing and Modelling“, 1st edition, Wiley, 1996. [Google Scholar]
  5. U. Desai, R. J. Martis, C. G. Nayak and G. Seshikala, “Machine Intelligent Diagnosis of ECG for Arrhythmia Classification Using DWT, ICA and SVM Techniques“, in proceeding of IEEE INDICON, pp 1–4, 2015. [Google Scholar]
  6. A. S. Thakare, R. Ghongade and BarhatteA. S.Prof., “QRS Complex Detection and Arrhythmia Classification using SVM“, in preceding of International Conference on Communication, Control and Intelligent Systems (CCIS), pp 239–243, 2015. [Google Scholar]
  7. E. M. Imah, F. A. Afif and M. Ivan. Fanany, “A Comparative Study on Daubechies Wavelet Transformation, Kernel PCA and PCA as Feature Extractors for Arrhythmia Detection Using SVM“, in proceeding of IEEE Region 10 Conference, pp 5–9, 2011. [Google Scholar]
  8. P. Sarma, S. R. Nirmala and K. K Sarma, “ECG Classification using Wavelet Subband“, in preceding of International Conference on Signal Processing and Integrated Networks (SPIN), pp 785–790, 2014. [Google Scholar]
  9. P. Sarma, S. R. Nirmala and K. K. Sarma, “Classification of ECG using Some Novel Features“, in Proceeding of IEEE ICETACS, 2013. [Google Scholar]
  10. K. Lochan, P. Sah and K. K. Sarma, “Innovative feature set for retinopathic analysis of diabetes and its detection“, IEEE NCETACS, 2012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.