Open Access
Issue
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
Article Number 04027
Number of page(s) 8
Section Computers
DOI https://doi.org/10.1051/matecconf/201712504027
Published online 04 October 2017
  1. A. Yilmaz, O. Javed and M. Shah, ACM Computing Surveys, “Object Tracking: A Survey”, Vol. 38, No. 4, Article 13, (2006). [Google Scholar]
  2. A.F.M. Saifuddin Saif, A. Prabuwono, Z. R. Mahayuddin and H. Himawan, International Journal of Advancements in Computing Technology (IJACT), “A Review of Machine Vision based on Moving Objects Object Detection from UAV Aerial Images“, Vol. 5, (2013). [Google Scholar]
  3. M. Joshi, R. Madri and M. Joshi, TENCON 2013 - 2013 IEEE Region 10 Conference (31194), “Real time motion tracking algorithm for search and rescue robots”, (2013). [Google Scholar]
  4. M. A. Abdelwahab and M. M. Abdelwahab, Multimedia (ISM), IEEE International Symposium on, “A Novel Algorithm for Vehicle Detection and Tracking in Airborne Videos“, (2015). [Google Scholar]
  5. P. Burdziakowski, M. Przyborski and J. Szulwic, 1st Int. Con. on Innovative Research and Maritime App. of Space Technology IRMAST, “A Vision-Based Unmanned Aerial Vehicle Navigation Method“, (2015). [Google Scholar]
  6. X. Cao, C. Gao, J. Lan, Y. Yuan and P. Yan, Neurocomputing, “Ego motion guided particle filter for vehicle tracking in airborne videos“, Vol. 124, pp. 168–177, (2014). [Google Scholar]
  7. Y. Motai, S. K. Jha and D. Kruse, Image Communication, “Human tracking from a mobile agent: Optical flow and Kalman filter arbitration“, Vol. 27, pp. 83–95, (2012). [Google Scholar]
  8. A. Shantaiya, K. Verma and K. Mehta, Europ. J. of Adv. in Eng. and Tech., “Multiple Object Tracking Using Kalman Filter And Optical Flow“, pp. 34–39, (2015). [Google Scholar]
  9. P. Perez, C. Hue, J. Vermaak, and M. Gangnet, ECCV 2002, LNCS 2350, “Color-Based Probabilistic Tracking“, pp. 661–675, (2002). [Google Scholar]
  10. H. Yang, L. Shao, F. Zheng, L. Wangd and Z. Song, Neurocomputing, “Recent advances and trends in visual tracking: A review”, Vol. 74, pp. 3823–3831, (2011). [Google Scholar]
  11. S. Sivaraman and M. M. Trivedi, IEEE transactions on intelligent transportation systems, “Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis”, Vol. 14, no. 4, (2013). [Google Scholar]
  12. M. Coskuna, S. Ünala, 9th Int. Conf. Inter. Eng., “Implementation of Tracking of a Moving Object Based on Camshift Approach with a UAV“, (2015). [Google Scholar]
  13. B. L. Sefidgari, Int. J. of Artificial Intelligence & App. (IJAIA), “Feed-Back Method Based On Image Processing for Detecting Human Body Via Flying Robot“, Vol. 4, No. 6, (2013). [Google Scholar]
  14. D. Geronimo, A. Sappa, A. Lopez and D. Ponsa, Proc. 5th Int. Conf. Comput. Vis. Syst., “Adaptive image sampling and windows classification for on-board pedestrian detection“, (2007). [Google Scholar]
  15. J. Shi and C. Tomasi, IEEE Conf. on Computer Vision and Pattern Recognition, “Good Features to Track“, (1994). [Google Scholar]
  16. P. H. S. Torr and A. Zisserman, Computer Vision and Image Understanding, “MLESAC: A New Robust Estimator with Application to estimating Image Geometry“, (2000). [Google Scholar]
  17. R. T. Collins, X. Zhou, and S. K. Teh, IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2005), January, 2005. “An Open Source Tracking Testbed and Evaluation Web Site,”, available online until 14th June 2017 at: http://vision.cse.psu.edu/data/vividEval/main.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.