Open Access
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
Article Number 02001
Number of page(s) 5
Section Systems
Published online 04 October 2017
  1. J. C. Butcher, “Numerical Methods for Ordinary Differential Equations”. New York: John Wiley & Sons (2008). [CrossRef] [Google Scholar]
  2. P. J. Van der Houwen, and B. P. Sommeijer, “Stability in Linear Multistep Methods for Pure Delay Equations”, J. Comput. Appl. Math., 10, (1984): 55–63. [CrossRef] [Google Scholar]
  3. A. N. Al-Mutib, “Stability Properties of Numerical Methods for Solving Delay Differential Equations”, J. Comput. Appl. Math., 10, (1984): 71–79. [CrossRef] [Google Scholar]
  4. K. J. in’t Hout and M. N. Spijker, “Stability Analysis of Numerical Methods for Delay Differential Equations”, Numer. Math., 59, (1991): 807–814. [CrossRef] [Google Scholar]
  5. D. R. Wille, and C. T. H. Baker, “Stepsize Control and Continuity Consistency for State-Dependent Delay-Differential Equations”, J. Comput. Appl. Math., 53, (1994): 163–170. [CrossRef] [Google Scholar]
  6. C.W. Cryer, “Highly-Stable Multistep Methods for Retarded Differential Equations”, SIAM J. Numer. Anal. 11, (1974): 788–797. [CrossRef] [Google Scholar]
  7. V. K. Barwell, “Special Stability Problems for Functional Differential Equations”, BIT, 15, (1975): 130–135. [CrossRef] [Google Scholar]
  8. L. F. Widerholt, “Stability of Multistep Methods for Delay Differential Equations”, Math. Comput., 30 (134), (1976): 283–290. [CrossRef] [Google Scholar]
  9. D. S. Watanabe, and M. Roth, “The Stability of Difference Formulas for Delay Differential Equations”, SIAM J. Numer. Anal., 22, (1985): 132–145. [CrossRef] [Google Scholar]
  10. A. Bellen, and M. Zennaro, “Strong Contractivity Properties of Numerical Methods for Ordinary and Delay Differential Equations”, Appl. Numer. Math., 9, (1992): 321–346. [CrossRef] [Google Scholar]
  11. L. Brugnano and D. Trigiante, “Solving Differential Problems by Multistep Initial and Boundary Value Methods”. Amsterdam: Gordon and Breach Science Publishers (1998). [Google Scholar]
  12. F. Shakeri, and M. Dehghan, “Solution of delay differential equations via a homotopy perturbation method”, Mathematical and Computer Modelling, 48, (2008): 486–498. [CrossRef] [Google Scholar]
  13. M. Zennaro, “Delay Differential Equations: Theory and Numerics, in Theory and Numerics of Ordinary and Partial Differential Equations”, Adv. Numer. Anal., 5, Clarendon Press, Oxford, (1995). [Google Scholar]
  14. G.O. Akinlabi and S. O. Edeki, “On Approximate and Closed-form Solution Method for Initial-value Wave-like Models”, International Journal of Pure and Applied Mathematics, 107 (2), (2016): 449–456. [CrossRef] [Google Scholar]
  15. L. Qiu, T. Mitsui, and J.-X. Kuang, “The numerical stability of the θ-method for delay differential equations with many variable delays”, Journal of Computational Mathematics, 17 (5) (1999): 523–532. [Google Scholar]
  16. S.O. Edeki, G.O. Akinlabi and S.A. Adeosun, “Analytic and Numerical Solutions of Time-Fractional Linear Schrödinger Equation”, Communications in Mathematics and Applications, 7 (1), (2016): 1–10. [Google Scholar]
  17. R. K. Saeed and B. M. Rahman, “Adomian Decomposition Method for Solving System of Delay Differential Equation”, Australian Journal of Basic and Applied Sciences, 4 (8) (2010): 3613–3621. [Google Scholar]
  18. J. K. Zhou, “Differential Transformation and its Application in Electrical Circuits”, Huazhong University Press,Wuhan, China, (1986). [Google Scholar]
  19. S. O. Edeki, G. O. Akinlabi, S. A. Adeosun, “On a modified transformation method for exact and approximate solutions of linear Schrödinger equations”, AIP Conference proceedings 1705, 020048 (2016); doi: 10.1063/1.4940296. [CrossRef] [Google Scholar]
  20. Gh. J. Mohammed, F. S. Fadhel, “Extend differential transform methods for solving differential equations with multiple delay”, Ibn Al-Haitham J. for Pure and Appl. Sci., 24 (3), (2011): 1–5. [EDP Sciences] [Google Scholar]
  21. S. O. Edeki, O. O. Ugbebor, E. A. Owoloko, “Analytical Solutions of the Black–Scholes Pricing Model for European Option Valuation via a Projected Differential Transformation Method”, Entropy, 17 (11), (2015): 7510–7521. [CrossRef] [Google Scholar]
  22. J. Rebenda, Z. Smarda, Y. Khan, “A Taylor Method Approach for Solving of Nonlinear Systems of Functional Differential Equations with Delay”, arXiv:1506.05646v1, [math.CA], 18 June, (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.