Open Access
Issue |
MATEC Web Conf.
Volume 111, 2017
Fluids and Chemical Engineering Conference (FluidsChE 2017)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 6 | |
Section | Renewable Energy and Biofuels | |
DOI | https://doi.org/10.1051/matecconf/201711103002 | |
Published online | 20 June 2017 |
- Beltramino, F., Roncero, M. B., Vidal, T., Torres, A. L., & Valls, C. (2015). Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment. Bioresour. Technol., 192, 574–581. [CrossRef] [Google Scholar]
- Minnick, D. L., & Scurto, A. M. (2015). Reversible and non-reactive cellulose separations from ionic liquid mixtures with compressed carbon dioxide. Chem. Commun., 51(63), 12649–12652. [Google Scholar]
- Ibrahim, F., Moniruzzaman, M., Yusup, S., & Uemura, Y. (2015). Dissolution of cellulose with ionic liquid in pressurized cell. J. Mol. Liq., 211, 370–372. [CrossRef] [Google Scholar]
- Christensen, C. H., Rass-Hansen, J., Marsden, C. C., Taarning, E., & Egeblad, K. (2008). The Renewable Chemicals Industry. ChemSusChem, 1(4), 283–289. [CrossRef] [Google Scholar]
- Gallezot, P. (2008). Catalytic Conversion of Biomass: Challenges and Issues. ChemSusChem, 1(8-9), 734–737. [CrossRef] [Google Scholar]
- Xu, J., Xiong, P., & He, B. (2016). Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery. Bioresour. Technol, 200, 961–970. [CrossRef] [Google Scholar]
- An, Y., Zong, M., Wu, H., & Li, N. (2015). Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour.Technol, 192, 165–171. [Google Scholar]
- Lee, H. V., Hamid, S. B., & Zain, S. K. (2014). Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. The Scientific World Journal, 2014, 1–20. [Google Scholar]
- Socha, A. M., Parthasarathi, R., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., Singh, S. (2014). Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. PNAS, 111(35). [Google Scholar]
- Badgujar, K. C., & Bhanage, B. M. (2015). Factors governing dissolution process of lignocellulosic biomass in ionic liquid: Current status, overview and challenges. Bioresour. Technol., 178, 2–18. [CrossRef] [Google Scholar]
- Cocalia, V., Gutowski, K., & Rogers, R. (2006). The coordination chemistry of actinides in ionic liquids: A review of experiment and simulation. Coor. Chem. Rev., 250(7-8), 755–764. [CrossRef] [Google Scholar]
- Wang, P., Wenger, B., Humphry-Baker, R., Moser, J., Teuscher, J., Kantlehner, W,. Grätzel, M. (2005). Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids. J. Am. Chem. Soc., 127(18), 6850–6856. [CrossRef] [Google Scholar]
- Wang, P., Zakeeruddin, S. M., Moser, J., Humphry-Baker, R., & Grätzel, M. (2004). A Solvent-Free, SeCN - /(SeCN) 3 - Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells. J. Am. Chem. Soc., 126(23), 7164–7165. [CrossRef] [Google Scholar]
- Mora-Pale, M., Meli, L., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2011). Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol. Bioeng., 108(6), 1229–1245. [CrossRef] [Google Scholar]
- Kuhlmann, E., Himmler, S., Giebelhaus, H., & Wasserscheid, P. (2007). Imidazolium Dialkylphosphates — A Class of Versatile, Halogen-Free and Hydrolytically Stable Ionic Liquids. ChemInform, 38(30). [CrossRef] [Google Scholar]
- Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable Sustainable Energy Rev., 27, 77–93. [Google Scholar]
- Bhat, I., Mustafa, M.T., Mohmod, A. L., Khalil., (2011) Spectroscopic, Thermal, And Anatomical Characterization Of Cultivated Bamboo (Gigantochloa Spp.) Bioresour. Technol., 6(2), 1752–1763. [Google Scholar]
- Liang, H.F, Li, G.J, Gou, G.J., & Wang, A.Q. (2013). Study of Preparation and Thermal Stability of Cyano-Functionalized Imidazolium Type Ionic Liquids., Asian J. Chem., 25(9), 4779–4782. [Google Scholar]
- Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodríguez, H., Rogers, R. (2009) Green Chem., 11, 646–655. [CrossRef] [Google Scholar]
- R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, (2002). J. Am. Chem. Soc., 124, 4974–4975. [CrossRef] [Google Scholar]
- Yang, Z., Xu, S., Ma, X., & Wang, S. (2008). Characterization and acetylation behavior of bamboo pulp. Wood Sci And Technol, 42(8), 621–632. [CrossRef] [Google Scholar]
- Financie, R., Moniruzzaman, M., & Uemura, Y. (2016). Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment. Biochem. Eng. J., 110, 1–7. [CrossRef] [Google Scholar]
- Hernández-Mena L., Pecora A., Beraldo A., 2014, Slow pyrolysis of bamboo biomass: analysis of biochar properties, Chem. Eng. Trans, 37, 115–120. [Google Scholar]
- Jiang, Z., Miao, J., Yu, Y., & Zhang, L. (2016). Effective Preparation of Bamboo Cellulose Fibers in Quaternary Ammonium/DMSO Solvent. Bioresources, 11(2). [Google Scholar]
- Muhammad, N., Man, Z., Bustam, M. A., Mutalib, M. A., & Rafiq, S. (2013). Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J. Ind. Eng. Chem., 19(1), 207–214. [CrossRef] [Google Scholar]
- Xu, G., Wang, L., Liu, J., & Wu, J. (2013). FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi. Appl. Surf. Sci., 280, 799–805. [CrossRef] [Google Scholar]
- Liew, F. K., Hamdan, S., Rahman, M. R., Rusop, M., Lai, J. C., Hossen, M. F., & Rahman, M. M. (2015). Synthesis and Characterization of Cellulose from Green Bamboo by Chemical Treatment with Mechanical Process. J. Chem., 1–6. [CrossRef] [Google Scholar]
- Zhang, X., Wang, F., & Keer, L. (2015). Influence of Surface Modification on the Microstructure and Thermo-Mechanical Properties of Bamboo Fibers. Materials, 8(10), 6597–6608. [CrossRef] [Google Scholar]
- Wang, Q., Chen, Q., & Endo, T. (2015). Thermal Decomposition of Bamboo Phyllostachys Edulis Pretreated with Ionic Liquids-Water Mixtures. Green and Sustainable Chemistry GSC, 05(02), 55–62. [CrossRef] [Google Scholar]
- Meenatchi, B., Renuga, V., & Manikandan, A. (2016). Cellulose dissolution and regeneration using various imidazolium based protic ionic liquids. J. Mol. Liq. [Google Scholar]
- Gordobil, O., Moriana, R., Zhang, L., Labidi, J., & Sevastyanova, O. (2016). Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Industrial Crops and Products, 83, 155–165. [CrossRef] [Google Scholar]
- Strydom, C., Sehume, T., Bunt, J., & van Dyk, J. (2015). The influence of selected biomass additions on the co-pyrolysis with an inertinite-rich medium rank C grade South African coal. J. South. Afr Inst. Min. Metallu., 115(8), 707–716. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.