Open Access
MATEC Web Conf.
Volume 111, 2017
Fluids and Chemical Engineering Conference (FluidsChE 2017)
Article Number 01007
Number of page(s) 7
Section Advances in Fluids Flow and Mechanics
Published online 20 June 2017
  1. Aqil, M., et al., Neural Networks for Real Time Catchment Flow Modeling and Prediction. Water Resources Management, 2007. 21(10): p. 1781–1796. [CrossRef] [Google Scholar]
  2. Kentel, E., Estimation of river flow by artificial neural networks and identification of input vectors susceptible to producing unreliable flow estimates. Journal of Hydrology, 2009. 375(3–4): p. 481–488. [CrossRef] [Google Scholar]
  3. Jain, A. and A.M. Kumar, Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 2007. 7(2): p. 585–592. [Google Scholar]
  4. Nilsson, P., C.B. Uvo, and R. Berndtsson, Monthly runoff simulation: Comparing and combining conceptual and neural network models. Journal of Hydrology, 2006. 321(1–4): p. 344–363. [CrossRef] [Google Scholar]
  5. Kneis, D., A lightweight framework for rapid development of object-based hydrological model engines. Environmental Modelling & Software, 2015. 68(0): p. 110–121. [CrossRef] [Google Scholar]
  6. Samsudin, R., P. Saad, and A. Shabri, River flow time series using least squares support vector machines. Hydrol. Earth Syst. Sci., 2011. 15(6): p. 1835–1852. [CrossRef] [Google Scholar]
  7. Firat, M. and M.E. Turan, Monthly river flow forecasting by an adaptive neuro-fuzzy inference system. Water and Environment Journal, 2010. 24(2): p. 116–125. [CrossRef] [Google Scholar]
  8. Akhtar, M.K., et al., River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrol. Earth Syst. Sci., 2009. 13(9): p. 1607–1618. [CrossRef] [Google Scholar]
  9. Nativi, S., et al., Big Data challenges in building the Global Earth Observation System of Systems. Environmental Modelling & Software, 2015. 68(0): p. 1–26. [CrossRef] [Google Scholar]
  10. Seyam, M. and Y. Mogheir, Application of artificial neural networks model as analytical tool for groundwater salinity. Journal of Environmental Protection, 2011. 2(01): p. 56. [CrossRef] [Google Scholar]
  11. Solomatine, D., L.M. See, and R.J. Abrahart, Data-Driven Modelling: Concepts, Approaches and Experiences, in Practical Hydroinformatics, R. Abrahart, L. See, and D. Solomatine, Editors. 2008, Springer Berlin Heidelberg. p. 17–30. [Google Scholar]
  12. Kisi, O., et al., Intermittent Streamflow Forecasting by Using Several Data Driven Techniques. Water Resources Management, 2012. 26(2): p. 457–474. [CrossRef] [Google Scholar]
  13. Daniel, E.B., et al., Watershed Modeling and its Applications: A State-of-the-Art Review. The Open Hydrology Journal, 2011. 5: p. 26–50. [CrossRef] [Google Scholar]
  14. Kanevski, M., et al., Environmental data mining and modeling based on machine learning algorithms and geostatistics. Environmental Modelling & Software, 2004. 19(9): p. 845–855. [CrossRef] [Google Scholar]
  15. Seyam, M. and F. Othman, Long-term variation analysis of a tropical river’s annual streamflow regime over a 50-year period. Theoretical and Applied Climatology, 2015. 121(1): p. 71–85. [CrossRef] [Google Scholar]
  16. Lee, C.M., Master Plan Study on Flood Mitigation and River Management for Sg. Selangor River Basin., 2002, Drainage and Irrigation Department (DID) Malaysia. [Google Scholar]
  17. Hassan, A.J., A.A. Ghani, and R. Abdullah, Development Of Flood Risk Map Using GIS For Sg. Selangor Basin, 2004, National Hydraulic Research Institute of Malaysia: Malaysia. [Google Scholar]
  18. Subramaniam, V., Managing Water Supply In Selangor And Kuala Lumpur, in BULETIN INGENIEUR2004, THE BOARD OF ENGINEERS MALAYSIA: 50580 Kuala Lumpur, Malaysia. p. 12–20. [Google Scholar]
  19. Seyam, M. and F. Othman, The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models. Water Resources Management, 2014. 28(9): p. 2583–2597. [CrossRef] [Google Scholar]
  20. Seyam, M. and F. Othman, Long-term variation analysis of a tropical river’s annual streamflow regime over a 50-year period. Theoretical and Applied Climatology, 2014. [Google Scholar]
  21. Maier, H.R. and G.C. Dandy, Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software, 2000. 15(1): p. 101–124. [CrossRef] [Google Scholar]
  22. Firat, M., Artificial Intelligence Techniques for river flow forecasting in the Seyhan River Catchment, Turkey. Hydrol. Earth Syst. Sci. Discuss., 2007. 4(3): p. 1369–1406. [CrossRef] [Google Scholar]
  23. Behzad, M., K. Asghari, and E.A. Coppola Jr, Comparative Study of SVMs and ANNs in Aquifer Water Level Prediction. Journal of Computing in Civil Engineering, 2010. 24: p. 408. [CrossRef] [Google Scholar]
  24. Asefa, T., et al., Multi-time scale stream flow predictions: The support vector machines approach. Journal of Hydrology, 2006. 318(1-4): p. 7–16. [CrossRef] [Google Scholar]
  25. Yu, P.-S., S.-T. Chen, and I.F. Chang, Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 2006. 328(3–4): p. 704–716. [Google Scholar]
  26. Wu, C.L., K.W. Chau, and Y.S. Li, River stage prediction based on a distributed support vector regression. Journal of Hydrology, 2008. 358(1–2): p. 96–111. [Google Scholar]
  27. Asefa, T., et al., Multi-time scale stream flow predictions: The support vector machines approach. Journal of Hydrology, 2006. 318(1–4): p. 7–16. [CrossRef] [Google Scholar]
  28. Chen, S.-T. and P.-S. Yu, Pruning of support vector networks on flood forecasting. Journal of Hydrology, 2007. 347(1–2): p. 67–78. [CrossRef] [Google Scholar]
  29. Lin, J.Y., C.T. Cheng, and K.W. Chau, Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 2006. 51(4): p. 599–612. [Google Scholar]
  30. Basketfield, D. and N. She, Long Range Forecast of Streamflow Using Support Vector Machine, in Impacts of Global Climate Change. 2005. p. 1–9. [Google Scholar]
  31. Guo, J., et al., Monthly streamflow forecasting based on improved support vector machine model. Expert Systems with Applications, 2011. 38(10): p. 13073–13081. [CrossRef] [Google Scholar]
  32. Noori, R., et al., Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 2011. 401(3–4): p. 177–189. [CrossRef] [Google Scholar]
  33. Shabri, A. and Suhartono, Streamflow forecasting using least-squares support vector machines. Hydrological Sciences Journal, 2012. 57(7): p. 1275–1293. [CrossRef] [Google Scholar]
  34. Ch, S., et al., Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing, 2013. 101(0): p. 18–23. [CrossRef] [Google Scholar]
  35. Tiwari, M.K. and C. Chatterjee, Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach. Journal of Hydrology, 2010. 394(3–4): p. 458–470. [CrossRef] [Google Scholar]
  36. Perugu, M., A. Singam, and C. Kamasani, Multiple Linear Correlation Analysis of Daily Reference Evapotranspiration. Water Resources Management, 2013. 27(5): p. 1489–1500. [CrossRef] [Google Scholar]
  37. Seyam, M., F. Othman, and A. El-Shafie, RBFNN Versus Empirical Models for Lag Time Prediction in Tropical Humid Rivers. Water Resources Management, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.