Open Access
Issue
MATEC Web Conf.
Volume 109, 2017
2017 2nd International Conference on Materials Science and Nanotechnology (ICMSNT 2017) – 2017 2nd International Symposium on Material Science and Technology (ISMST 2017)
Article Number 05001
Number of page(s) 8
Section Chapter 5: Modelling to Predict Mechanical Behaviours and Other Technologies
DOI https://doi.org/10.1051/matecconf/201710905001
Published online 31 May 2017
  1. L. Fedele, L. Colla, S. Bobbo, S. Barison, F. Agresti, Experimental stability analysis of different water-based nanofluids, Nanoscale Res. Lett., 6, 300–308 (2011). [CrossRef] [PubMed] [Google Scholar]
  2. G. Huminic, A. Huminic, Application of nanofluids in heat exchangers: are view, Renew. Sust. Energy Rev., 16, 5625–5638 (2012). [CrossRef] [Google Scholar]
  3. S. Halelfadl, A.M. Adham, N. Mohd Ghazali, T. Mare P. Estelle R. Ahmad, Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid, Appl. Therm. Eng., 62, 492–499 (2014). [CrossRef] [Google Scholar]
  4. H.R. Seyf, M. Feizbakhshi, Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks, Int. J. Therm. Sci., 58, 168–179 (2012). [CrossRef] [Google Scholar]
  5. M.R. Hajmohammadi, H. Maleki, G. Lorenzini, S.S. Nourazar, Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces, Adv. Powder Technol., 26, 193–199 (2015). [CrossRef] [Google Scholar]
  6. Chien, H.T., Tsai, C.Y., Chen, P.H. and Chen, P.Y., Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid, Proceedings of the Fifth International Conference on Electronic Packaging Technology, IEEE, Shanghai, China, 389–391 (2003). [Google Scholar]
  7. G.S. Wang, B. Song, Z.H. Liu, Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids, Expt. Therm. Fluid Sci., 34, 1415–1421 (2010). [CrossRef] [Google Scholar]
  8. A.B. Solomon, K. Ramachandran and B.C. Pillai, Thermal performance of a heat pipe with nanoparticles coated wick, Appl. Therm. Eng., 36, 106–112 (2012). [CrossRef] [Google Scholar]
  9. M. Shafahi, V. Bianco, K. Vafai, and O. Manca, An investigation of the thermal performance of cylindrical heat pipes using nanofluids, Int. J. Heat. Mass. Transf., 53, 376–383 (2010). [CrossRef] [Google Scholar]
  10. L.G. Asirvatham, R. Nimmagadda, S. Wongwises, Heat transfer performance of screen mesh wick heat pipes using silver-water nanofluid, Int. J. Heat. Mass. Transf., 60, 201–209 (2013). [CrossRef] [Google Scholar]
  11. H.B. Ma, C. Wilson, Q. Yu, K. Park, U.S. Choi, M. Tirumala, An experimental investigation of heat transport capability in a nanofluids oscillating heat pipe, J. Heat. Transf., 128, 1213–1216 (2006). [CrossRef] [Google Scholar]
  12. Z. Wan, J. Deng, B. Li, Y. Xu, X. Wang and Y. Tang, Thermal performance of a miniature loop heat pipe using water-copper nanofluid., Appl. Therm. Eng., 78, 712–719 (2015). [CrossRef] [Google Scholar]
  13. G. Franchi and X. Huang, Development of composite wicks for heat pipe performance enhancement, Heat Transf. Eng., 29, 873–884 (2008). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.