Open Access
MATEC Web Conf.
Volume 107, 2017
Dynamics of Civil Engineering and Transport Structures and Wind Engineering – DYN-WIND’2017
Article Number 00085
Number of page(s) 8
Published online 24 May 2017
  1. J.D. Spitler. Ground-source heat pump system research - Past, present, and future, HVAC&R Research, Vol: 11, 2, 165–167 (2005) [CrossRef] [Google Scholar]
  2. P. Marek, M. Guštar, T. Anagnos, Simulation-Based Reliability Assessment for Structural Engineers (CRC Press, Inc., Boca Raton, Florida, 1995) [Google Scholar]
  3. R.E. Melchers, Structural reliability analysis and prediction (2nd ed., John Wiley, Chichester, New York, 1999) [Google Scholar]
  4. P. Marek, J. Brozzetti, M. Guštar, P. Tikalsky (ed.), Probabilistic Assessment of Structures using Monte Carlo simulation. Basics, Exercises, Software, (2nd edition, CD ROM attached, ITAM Czech Academy of Sciences, Prague, 2003) [Google Scholar]
  5. M. Grigoriu, Simulation of non-Gaussian translation processes. J. Engng. Mech, ASCE, 124, 2, 121–6 (1998). [CrossRef] [Google Scholar]
  6. K.K. Phoon, S.T. Quek, H. Huang, Simulation of non-Gaussian processes using fractile correlation, Probabilist. Eng. Mech., 19, 287–292 (2004) [CrossRef] [Google Scholar]
  7. M. Vořechovský, D. Novák, Correlation control in small-sample Monte Carlo type simulations in a simulated annealing approach, Probabilist., Eng., Mech. 24, 3, 452–462 (2009) [CrossRef] [Google Scholar]
  8. P. Konečný, Correlation of Steel Yield Stress and Ultimate Strength – Monte Carlo Simulation via Non-Gaussian Random Variables, Mater. Sci. Forum. (to be published in 2018) [Google Scholar]
  9. M. Sýkora, Probabilistic Analysis of Time-Variant Structural Reliability (Doctoral thesis, CTU Prague, 2005) [Google Scholar]
  10. K.K. Phoon, S.P. Huang, S.T. Quek, Simulation of second-order processes using Karhunen - Loeve expansion, Comput. Struct., 80, 12, 1049–60 (2002) [CrossRef] [Google Scholar]
  11. N. Metropolis, S. Ulam, S. The Monte Carlo Method. Journal of American Statistical Association, 44, 247, 335–341 (1945) [Google Scholar]
  12. H.J. Pradlwarter, G.I. Schuëller, Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation, Probabilist. Eng. Mech. 14, 3, 213–227 (1999) [CrossRef] [Google Scholar]
  13. P. Konečný, J. Brožovský, P. Ghosh, Evaluation of Chloride Influence on the Cracking in Reinforced Concrete Using Korozeeneck Software, Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series, 11, 1, 1–7 (2011) [Google Scholar]
  14. P.S. Marsh, D.M. Frangopol, Reinforced concrete bridge deck reliability model incorporating temporal and spatial variations of probabilistic corrosion rate sensor data, Reliab. Eng. Syst. Saf., 93, 3, 394–409 (2008) [CrossRef] [Google Scholar]
  15. R.L. Iman, W.J. Conover, A Distribution-Free Approach to Inducing Rank Correlation among Input Variables. Communications in Statistics Part B-Simulation and Computation, 11, 3, 311–334 (1982) [Google Scholar]
  16. Kralik A RSM Method for Probabilistic Nonlinear Analysis of Reinforced Concrete Bubbler Tower Structure Integrity. In: Proceedings of European Safety and Reliability Conference (ESREL), Reliability, Risk and Safety: Theory and Applications, 2010, 1-3, 1369–1372. Taylor & Francis (2009) [Google Scholar]
  17. M. Krejsa, P. Janas, R. Čajka, Using DOProC Method in Structural Reliability Assessment, Appl. Mech. Mater. 300-301, 860–869 (2013) [CrossRef] [Google Scholar]
  18. EnergyPlus Energy Simulation Software available on-line at: <> (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.