Open Access
Issue
MATEC Web Conf.
Volume 105, 2017
International Workshop on Transportation and Supply Chain Engineering (IWTSCE’16)
Article Number 00001
Number of page(s) 6
DOI https://doi.org/10.1051/matecconf/201710500001
Published online 14 April 2017
  1. El Ghazali Talbi, Metaheuristics: From Design to Implementation (Wiley, 2009) 624 [Google Scholar]
  2. Moshe Shaked, J. George Shanthikumar, Stochastic Orders (Springer, New York, 2007) 473 [Google Scholar]
  3. John R. Birge, François Louveaux, Introduction to stochastic programming (Springer, New York, 2011) 500 [Google Scholar]
  4. Walter J. Gutjahr, Two metaheuristics for multiobjective stochastic combinatorial optimization. Stochastic Algorithms: Foundations and Applications. 3777, Lecture Notes in Computer Science, 116–125, (2005) [CrossRef] [Google Scholar]
  5. Norio Baba, Akira Moromito. Three approaches for solving the stochastic multi-objective programming problem. Stochastic Optimization. Lecture Notes in Economics and Mathematical Systems, 379, (Springer, Berlin, Heidelberg), 93–109 (1992) [CrossRef] [Google Scholar]
  6. Xinchang Hao, Mitsuo Gen, Lin Lin, Gursel A. Suer. Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem. Journal of Intelligent Manufacturing, 1–13, (2015) [Google Scholar]
  7. Giovanni Petrone, Gianluca Iaccarino, D. Quagliarella. Robustness Criteria in optimisation under uncertainty. Evolutionary and deterministic methods for design, Optimisation and control. CIRA, Capua, Italy 2011 [Google Scholar]
  8. Walter J. Gutjahr, Alois Pichler, Stochastic multiobjective optimization: a survey on non-scalarizing methods, Annals of Operations Research 236, Issue 2, pp 475–499, (January 2016) [Google Scholar]
  9. Angel A.Juan, Javier Faulin, Scott E. Grasman, Markuts Rabe, Gonçalo Figueira. A review of imheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives 2, 62–72, (2015) [CrossRef] [Google Scholar]
  10. Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T.Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, Parallel Problem Solving from Nature PPSN VI. Lecture Notes in Computer Science 1917, pp 849–858,(2000) [CrossRef] [Google Scholar]
  11. Josef Schwarz and jiri Ocenasek, Multiobjective bayesian optimization algorithm for combinatorial problems: Theory and practice, Neural Network World 11(5), 423–441, 2001 [Google Scholar]
  12. Yang Liu, Zhi-Ping Fan, Yao Zhang, A method for stochastic multiple criteria decision making based on dominance degrees. Information Sciences 181, 4139–4153, (2011) [CrossRef] [Google Scholar]
  13. Rajan Filomeno Coelho. Probabilistic Dominance in Multiobjective Reliability-Based Optimization: Theory and Implementation. IEEE Transactions on evolutionary computation 19, No. 2, 214–224, (2015) [CrossRef] [Google Scholar]
  14. Henri Bonnel, Julien Collonge. Optimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case, Journal of Global Optimization 62, 481–505,(2015) [CrossRef] [Google Scholar]
  15. Henri Bonnel, Julien Collonge. Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem. Journal of Global Optimization 162, 405–427, (2014) [Google Scholar]
  16. Mathieu Basseur, Eckart Zitzler. Handling Uncertainty in Indicator-Based Multiobjective Optimization. International Journal of Computational Intelligence Research 2(3)(2006). [Google Scholar]
  17. Jörg Fliege, Huifu Xu. Stochastic Multiobjective Optimization: Sample Average Approximation and Applications. Journal of Optimization Theory and Applications 151, Issue 1, pp 135–162, (2011) [CrossRef] [Google Scholar]
  18. Rafael Caballero, Emilio Cerdá, Maria M. Munoz, Lourdes Rey. Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multi-objective programming problems. European Journal of Operational Research 158, 633–648,(2004) [CrossRef] [Google Scholar]
  19. Arnaud Liefooghe, Matthieu Basseur, Laetitia Jourdan, El-Ghazali Talbi. ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization. Evolutionary Multi-Criterion Optimization, Springer, pp 386–400, (2007) [CrossRef] [Google Scholar]
  20. Nicolas Jozefowiez, Frédéric Semet, El-Ghazali Talbi. A Multiobjective vehicle routing problems. European Journal of Operational Research 189, pp 293–309,(2008) [Google Scholar]
  21. Evan Hughes. Evolutionary multi-objective ranking with uncertainty and noise. In Proceedings of the First Conference on Evolutionary Multi-Criterion Optimization, pp 329–343, (2001) [CrossRef] [Google Scholar]
  22. Kay Chen Tan, Chi Keong Goh. Handling Uncertainties in Evolutionary Multi-Objective Optimization. Computational Intelligence: Research Frontiers. Lecture Notes in Computer Science 5050, pp 262–292, (2008) [CrossRef] [Google Scholar]
  23. Yaochu Jin, J.Branke. Evolutionary Optimization in Uncertain Environments – A Survey. IEEE Transactionson Evolutionary Computation 9(3), 303–317 (2005) [CrossRef] [Google Scholar]
  24. Michel Gendreau, Gilbert Laporte, René Séguin. Stochastic vehicle routing problem, European Journal of Operational Research 88(1), pp 3–12 (1996) [Google Scholar]
  25. Eshetie Berhan, Birhanu Beshah, Daniel Kitaw. Stochastic Vehicle Routing Problem: A Literature Survey, Journal of Information Knowledge Management 13(3), 12 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.