Open Access
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 07002
Number of page(s) 13
Section Geotechnic, Geoenvironment and Geomatic Engineering
Published online 05 April 2017
  1. H.J. Mauritsch, W. Seiberl, R. Arndt, A. Römer, K. Schneiderbauer, G. P. Sendlhofer, Geophysical investigations of large landslides in the Carnic Region of Southern Austria, Engineering Geology, 56, 373–388 (2000) [CrossRef] [Google Scholar]
  2. D.M. McCann, A. Forster, Reconnaissance geophysical methods in landslide investigations, Engineering Geology, 29, 59–78 (1990) [CrossRef] [Google Scholar]
  3. Z.A.M. Hazreek, A.T.S. Azhar, M. Aziman, S.M.S.A. Fauzan, J.M. Ikhwan, M.A.N. Aishah, Forensic assessment on ground instability using electrical resistivity imaging (ERI), The 2nd Int. Conf. on Rheology and Modelling of Materials, Miskolc-Lillafüred, Hungary, (2015) [Google Scholar]
  4. M.H. Z. Abidin, R. Saad, F. Ahmad, D.C. Wijeyesekera, M.F.T. Baharuddin, Seismic refraction investigation on near surface landslides at the Kundasang area in Sabah, Malaysia, Procedia Engineering, 50, 516–531 (2012) [CrossRef] [Google Scholar]
  5. M.H.Z. Abidin, R. Saad, F. Ahmad, D.C. Wijeyesekera, M.F.T. Baharuddin, Integral analysis of geoelectrical (resistivity) and geotechnical (SPT) data in slope stability assessment, Academic J. of Science, 1(2), 305–316 (2012) [Google Scholar]
  6. M.H.Z. Abidin, M.F.. Baharuddin, A.F. Kamarudin, Application of geoelectrical method in subsurface profile forensic study, Proc. of Malaysian Technical Universities Conf. on Engineering and Technology, Melaka, Malaysia, (2010) [Google Scholar]
  7. A. Abdulrahman, M. Nawawi, R. Saad, A.S. Abu-Rizaiza, M.S. Yusoff, A.E. Khalil, K.S. Ishola, Characterization of active and closed landfill sites using 2D resistivity/IP imaging: Case studies in Penang, Malaysia, Environmental Earth Sciences, 75, 347, (2016) [Google Scholar]
  8. K. Parial, A. Biswas, S. Agrahari, S.P. Sharma, D. Sengupta, Identification of contaminated zones using direct current resistivity surveys in and around ash ponds near Kolaghat Thermal Power Plant, West Bengal, India, Int. J. of Geology & Earth Sciences, 1(2), 55–64 (2015) [Google Scholar]
  9. M.F.T. Baharuddin, A.R. Othman, S. Taib, R. Hashim, M.H. Zainal Abidin, M.A. Radzuan, Evaluating freshwater lens morphology affected by seawater intrusion using chemistry-resistivity integrated technique: A case study of two different land covers in Carey Island, Malaysia, Environmental Earth Sciences, 69, (2013) [Google Scholar]
  10. M.F.T. Baharuddin, S. Taib, R. Hashim, M.H. Z. Abidin, Assessment of seawater intrusion to the agricultural sustainability at the coastal area of Carey Island, Selangor, Malaysia, Arabian J. of Geosciences, 6, 3909–3928 (2013) [CrossRef] [Google Scholar]
  11. M.H. Loke, Electrical imaging surveys for environmental and engineering Studies, A Practical Guide to 2-D and 3-D Surveys, 1–67 (1999) [Google Scholar]
  12. R. Arjwech, M. E. Everett, Application of 2D Electrical Resistivity Tomography to Engineering Projects: Three Case Studies, Songklanakarin J. Science and Technology, 37(6), 675–681, (2015) [Google Scholar]
  13. A. Madun, I. Jefferson, K.Y. Foo, D.N. Chapman, M.G. Culshaw, P.R. Atkins, Characterization and quality control of stone columns using surface wave testing, Canadian Geotechnical J., 49, 1357–1368 (2012) [CrossRef] [Google Scholar]
  14. R. Saad, N.M. Muztaza, E.T. Mohamad, The 2D electrical resistivity tomography (ERT) study for civil and geotechnical engineering purposes, Electronic J. of Geotechechnical Engineering, 16, 1537–1545 (2011) [Google Scholar]
  15. M. Zarrocaa, R. Linaresa, P.C. Velásquez-Lópezb, C. Roquéc, R. Rodríguezd, Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and small-scale gold mining in Zaruma-Portovelo, Ecuador, J. of Applied Geophysics, 113, 103–113 (2015) [CrossRef] [Google Scholar]
  16. S.K. Nasab, A. Hojat, A. Kamkar-Rouhani, H.A. Javar, S. Maknooni, Successful use of geoelectrical surveys in area 3 of the Gol-e-Gohar Iron Ore Mine, Iran, Mine Water and the Environment, 30(3), 208–215 (2011) [CrossRef] [Google Scholar]
  17. M.N. Tijani, O.O. Osinowo, O. Ogedengbe, Mapping of sub-surface fracture systems using integrated electrical resistivity profiling and VLF-EM methods: A case study of suspected gold mineralization, Materials and Geoenvironment, 56(4), 415–436 (2009) [Google Scholar]
  18. J.M. Terrón, V. Mayoral, J.A Salgado, F.A. Galea, V.H.C. Odriozola, P. Mateos, A. Pizzo, Use of soil apparent electrical resistivity contact sensors for the extensive study of archaeological sites, Archaeological Prospection, 22(4), 269–281 (2015) [CrossRef] [Google Scholar]
  19. A. Hawamdeh, R. Jaradat, Z. Alsaad, Integrated application of geophysical methods for investigation of the Al-Berktain archaeological site in the City of Jerash, Jordan, Environmental Earth Sciences, 73(7), 3665–3674 (2015) [CrossRef] [Google Scholar]
  20. M. Marchetti, V. Sapia, A. Garello, D.D. Rita, A. Venuti, Geology and geophysics at the Archeological Park of Vulci (Central Italy), Annals of Geophysics, 57, (2014) [Google Scholar]
  21. M.G.D. Malaysia, Geological Map of Peninsular Malaysia, 8th Ed.,(1985) [Google Scholar]
  22. T. Gerudi, Cadangan Pembinaan Kolej Universiti Tun Hussein Onn, Laporan Penyiasatan Tapak, (2002) [Google Scholar]
  23. M.H. Loke, I. Acworth, T Dahlin, A comparison of smooth and blocky inversion methods 2-D electrical imaging surveys, Exploration Geophysics, 34(3), 182–187 (2013) [Google Scholar]
  24. M.H. Loke, R.D. Barker, Rapid least squares inversion of apparent resistivity pseudosection using a Quasi-Newton Method, Geophysics Prospective, 44(1), 131–152 (1996) [CrossRef] [Google Scholar]
  25. ABEM, Terrameter SAS 4000/SAS 1000 Instruction Manual, ABEM Instrument AB, Sweden, (2010) [Google Scholar]
  26. H.R. Burger, A.F. Sheehan, C.H. Jones, Introduction to Applied Geophysics, W.W. Norton & Company, (2006) [Google Scholar]
  27. S. G. C. Fraiha, J. B. C. Silva, Factor analysis of ambiguity in geophysics, Geophysics., 59(7), 1083–1091(1994) [Google Scholar]
  28. R.C. Benson, L. Yuhr, R.D. Kaufmann, Some considerations for selection and successful application of surface geophysical methods, Proc. the 3rd Int. Conf. on Applied Geophysics, Orlando, Florida (2003) [Google Scholar]
  29. M.H.Z. Abidin, R. Saad, D.C. Wijeyesekera, F. Ahmad, N.A. Ismail, the influence of electrical resistivity array on its soil electrical resistivity value, Applied Mechanics and Materials, 510, 185–192 (2014) [CrossRef] [Google Scholar]
  30. M.H.Z. Abidin, R. Saad, D.C. Wijeyesekera, F. Ahmad, The influence of electrical resistivity array on its soil electrical resistivity value, Electronic J. of Geotechnical Engineering, 18, 5643–5653 (2014) [Google Scholar]
  31. W.M. Telford, L.P. Geldart, R.E. Sheriff, Applied Geophysics, Cambridge University Press, Cambridge, (1990) [CrossRef] [Google Scholar]
  32. T.S. Lee, Slope Stability and Stabilization Methods: Geologic Site Investigation in chapter 4, John Wiley & Sons. Inc., (2002) [Google Scholar]
  33. A.R. Samsudin, A. Haryono, U. Hamzah, A.G. Rafek, Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: A case study from North Kelantan, Malaysia, Environmental Geology, 55(8), 1737–1743 (2008) [Google Scholar]
  34. D.H. Griffiths, R.F. King, Applied Geophysics for Geologist and Engineers: The Element of Geophysical Prospecting, Pergamon Press, (1981) [Google Scholar]
  35. Z.A.M. Hazreek, S. Rosli, W.D. Chitral, F. Ahmad, A.T.S. Azhar, M. Aziman, B. Ismail, Soil identification using field electrical resistivity method, J. of Physics: Conf. Series, 622, 1, (2015) [Google Scholar]
  36. Z.A.M. Hazreek, M. Aziman, A.T.S. Azhar, F. Fauziah, S. Rosli, The behaviour of laboratory soil electrical resistivity value under basic soil properties influences, IOP Conf. Series: Earth and Environmental Sciences, 23, 1, (2015) [Google Scholar]
  37. Z.A.M. Hazreek, F. Fauziah, D.C. Wijeyesekera, R. Saad, The influence of basic physical properties of soil on its electrical resistivity value under loose and dense condition, J. of Physics: Conf. Series, 495, 1, (2014) [Google Scholar]
  38. M.H.Z. Abidin, R. Saad, F. Ahmad, D.C. Wijeyesekera, M.F.T. Baharuddin, Correlation analysis between field electrical resistivity value (ERV) and basic geotechnical properties (BGP), Soil Mechanics and Foundation Engineering, 51(3), 117–125 (2014) [CrossRef] [Google Scholar]
  39. C. Liu, J.B. Evett, Soils and Foundation, Pearson Prentice Hall, (2008) [Google Scholar]
  40. Y. Jung, Y. Lee, H. Ha, application of electrical resistivity imaging techniques to civil and environmental problems, Use of Geophysical Methods in Construction, (2000) [Google Scholar]
  41. R.D. Barker, Electrical imaging and its application in engineering investigations, Geological Society, London, Engineering Geology Special Publications, 12, 37–43(1997) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.