Open Access
MATEC Web Conf.
Volume 87, 2017
The 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”
Article Number 01018
Number of page(s) 6
Section Civil Engineering
Published online 12 December 2016
  1. M. Y. Chong, “Malaysia Faces Looming Water Crisis: Sustainable Water Management,” The Star Newspaper, Malaysia, (2011). [Google Scholar]
  2. Z. B. Zaharaton, “Water Resources Management in Malaysia - The Way Forward,” Asian Water, Kuala Lumpur, Malaysia, (2004). [Google Scholar]
  3. S. Shahidan, I. Isham, and N. Jamaluddin, “A Review on Waste Minimization by Adopting in Self Compacting Concrete”, MATEC Web Conf., vol. 47, pp. 1–7, 2016. [CrossRef] [EDP Sciences] [Google Scholar]
  4. W. J. Lau, A. F. Ismail and S. Firdaus, “Treatment of car wash effluent using ultrafiltration and nanofiltration membranes”, Separation and Purification Technology, vol. 104, pp. 26–31, (2013). [CrossRef] [Google Scholar]
  5. M. A. Wahid and H. Tanaka, “Potential Implementation of Wastewater Reclamation and Reuse in Malaysian Urban Area,” International Sustainability and Civil Engineering Journal, vol. 1, no. 1, pp. 75–83, (2012). [Google Scholar]
  6. K. Boussu, G. Van Baelan, W. Colen, D. Eelen, S. Vanassche, C. Vandecasteele and B. Van der Bruggen, “Technical and economical evaluation of water recycling in the carwash industry with membrane processes,” Water Science and Technology, vol. 57, no. 7, pp. 1131–1135, (2008). [CrossRef] [Google Scholar]
  7. K. Boussu, C. Kindts, C. Vandecasteele and B. Van der Bruggen, “Applicability of nanofiltration in the carwash industry”, Seperation Purification Technology, vol. 54, pp. 139–146, (2007). [CrossRef] [Google Scholar]
  8. A. Al-Odwani, A. Ahmed and S. Bou-Hamad, “Carwash water reclamation in Kuwait”, Desalination, vol. 206, pp. 17–28, (2007). [CrossRef] [Google Scholar]
  9. N. Md Nor, N. Muhamad Bunnori, A. Ibrahim, S. Shahidan, and S. N. M. Saliah, “An investigation on acoustic wave velocity of reinforced concrete beam in-plane source,” in Proceedings - 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, CSPA 2011, 2011, pp. 19–22. [Google Scholar]
  10. T. Hamada and Y. Miyazaki, “Reuse of carwash water with a cellulose acetate ultrafiltration membrane aided by flocculation and activated carbon treatments,” Journal of Desalination. Volume, vol. 169, pp. 257–267, (2004). [CrossRef] [Google Scholar]
  11. K. Karakulski and A. W. Morawski, “Treatment of wastewater from wastewater from car washes by ultrafiltration”, Fresenius Environment Bulletin, vol. 12, pp. 343–348, (2003). [Google Scholar]
  12. C. Jonsson and A. S. Jonsson, “The influence of degreasing agents used at car washes on the performance of ultrafiltration membranes”, Desalination, vol. 100, pp. 115–123, (1995). [CrossRef] [Google Scholar]
  13. Malaysia Standard A, Environmental Quality Regulations: Sewage and Industrial Effluents, cyberjaya, Selangor: Government of Malaysia, (1978). [Google Scholar]
  14. S. Shahidan, R. Pullin, K. M. Holford, M. B. N, and N. Nor, “Quantitative Evaluation of the Relationship between Tensile Crack and Shear Movement in Concrete beams,” Adv. Mater. Res., vol. 626, pp. 355–359, 2013. [CrossRef] [Google Scholar]
  15. M. Panniza and G. Cerisola, “Applicability of electrochemical methods to carwash wastewaters for reuse. Part 1: Anodic oxidation with diamond and lead dioxide anodes”, Journal of Electronic and Chemical, vol. 638, pp. 28–32, (2010). [CrossRef] [Google Scholar]
  16. E. Bazrafshan, F. K. Mostafapoor, M. M. Soori and A. H. Mahvi, “Application of Combined Chemical Coagulation and Electro-Coagulation Process for Carwash Wastewater Treatment,” Environmental Bulletin, vol. 21, no. 9, pp. 2694–2701, (2012). [Google Scholar]
  17. M. Abdul Rahim, N. M. Ibrahim, Z. Idris, Z. M. Ghazaly, S. Shahidan, N. L. Rahim, L. A. Sofri, and N. F. Isa, “Properties of Concrete with Different Percentange of the Rice Husk Ash (RHA) as Partial Cement Replacement,” Mater. Sci. Forum, vol. 803, pp. 288–293, 2014. [Google Scholar]
  18. S. Shahidan, N. M. Bunnori, N. Md Nor, and S. R. Basri, “Damage severity evaluation on reinforced concrete beam by means of acoustic emission signal and intensity analysis,” in 2011 IEEE Symposium on Industrial Electronics and Applications, 2011, pp. 337–341. [CrossRef] [Google Scholar]
  19. Z. A. Bhatti, Q. Mahmood, I. A. Raja, A. H. Malik and D. Wu, “Chemical Oxidation of Carwash Industry Wastewater as an Effort to Decrease Water Pollution”, Journal of Physics and Chemistry of the Earth, vol. 36, pp. 465–469, (2011). [CrossRef] [Google Scholar]
  20. B. O. Kwach and J. O. Lalah, “High Concentration of Polycyclic aromatic Hydrocarbons found in Water and Sediments of Car Wash and Kisat areas of Winam Gulf, Lake Vctoria Kenya,” Bulletin of Environmental Contamination and Toxicology, vol. 83, no. 5, pp. 727–733, (2009). [CrossRef] [Google Scholar]
  21. Z. Nadzirah, N. H. Haslina and H. Rafidah, “Removal of Important Parameter from Car Wash Wastewater”, Applied Mechanics and Materials, vol. 773, pp. 1153–1157, (2015). [CrossRef] [Google Scholar]
  22. USEPA, “EPA’s Polluted brochure,” United States Environmental Protection Agency, United States, (1994). [Google Scholar]
  23. K. S. Al-Jabri, A. H. Al-Saidy, R. Taha and A. J. Al-Kemyani, “Effect of using Wastewater on the Properties of High Strength Concrete”, Procedia Engineering, vol. 14, pp. 370–376, (2011). [CrossRef] [Google Scholar]
  24. ASTM C1602, Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete, Pennsylvania, United States: American Society for Testing and Materials, (2006). [Google Scholar]
  25. ASTM C39, Test Method for Compressive Strength of Cylindrical Concrete Specimens, Pennsylvania, United States: American Society for Testing and Materials, (2005). [Google Scholar]
  26. ASTM C496, Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, Pennsylvania, United States: American Society for Testing and Materials, (2004). [Google Scholar]
  27. ASTM C496, Test Method for Static Modulus of Elasticity and Poisson Ratio of Concrete in Compression, Pennsylvania, United States: American Society for Testing and Materials, (2002). [Google Scholar]
  28. S. A. Kudus, N. M. Bunnori, S. R. Basri, S. Shahidan, M. N. M. Jamil, and N. M. Noor, “An Overview Current Application of Artificial Neural Network in Concrete,” Adv. Mater. Res., vol. 626, pp. 372–375, 2012. [Google Scholar]
  29. S. Shahidan, H. B. Koh, A. M. S. Alansi, and L. Y. Loon, “Strength Development and Water Permeability of Engineered Biomass Aggregate Pervious Concrete”, MATEC Web Conf., vol. 47, pp. 2–7, 2016 [CrossRef] [EDP Sciences] [Google Scholar]
  30. DOE 1988, Design of Normal Concrete Mixes. Building Research Establishment, Watford, United Kingdom: Department of the Environmental, (1988). [Google Scholar]
  31. BS EN 1008, Mixing Water for Concrete-Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water in Concrete, London: British Standards Institution, (2002). [Google Scholar]
  32. MS EN 197-1, Composition, specifications and conformity criteria for common cements, Cyberjaya, Selangor: Department of Standards Malaysia, (2014). [Google Scholar]
  33. ASTM C33, Specification for Concrete aggregates, Pennsylvania, United States: American Society for Testing and Materials, (2003). [Google Scholar]
  34. BS 882, Specification for Aggregates from Natural Sources for Concrete, London: British Standards Institution, (1992). [Google Scholar]
  35. ASTM C192, Practice for Making and Curing Concrete Test Specimens in the Laboratory, Pennsylvania, United States: American Society for Testing and Materials, (2006). [Google Scholar]
  36. ASTM C143, Test Method for Slump of Hydraulic Cement Concrete, Pennsylvania, United States: American Society for Testing and Materials, (2005). [Google Scholar]
  37. R. Zaneti, R. Etchepare and J. Rubio, “Car wash wastewater reclamation. Full- scale application and upcoming features,” Resources, Conservation and Recycling, vol. 55, no. 11, pp. 953–959, (2011). [Google Scholar]
  38. A. M. Neville, Properties of Concrete, 4th ed., London: Pearson, (1995). [Google Scholar]
  39. L. Tang, N. Lars-Olof and B. P. Muhammed, Resistance of Concrete to Chloride Ingress, London: Spom Press, (2012). [Google Scholar]
  40. C. Martin, “nfluence of Supplementary Cementitious Materials (SCMs) on concrete durability,” Eco-efficient concrete, pp. 153–197, (2013). [Google Scholar]
  41. BS EN 1992, Design of Concrete Structure, London: British Standards Institution, (2004). [Google Scholar]
  42. O. S. Lee, M. R. Salim, M. Ismail and M. I. Ali, “Reusing treated effluent in concrete technology”, Jurnal Teknologi, vol. 34, pp. 1–10, (2001). [Google Scholar]
  43. G. Murali, C. M. Vardhan, S. Raju, C. Mahalakshmi, G. Srinidhi and D. S. Zachariag, “Influence of various industrial effluents on concrete structures,” International Journal of Engineering Research and Application (IJERA), vol. 2, no. 2, pp. 704–709, (2012). [Google Scholar]
  44. Z. Z. Ismail and E. A. Al-Hashmi, “Assessing the recycling potential of industrial wastewater to replace fresh water in concrete mixes: application of polyvinyl acetate resin wastewater,” Journal of Cleaner Production, vol. 19, no. 2-3, pp. 197–203, (2011). [CrossRef] [Google Scholar]
  45. A. H. Noruzman, B. Muhammad, M. Ismail and A. Z. Majid, “Characteristics of treated effluents and their potential applications for producing concrete”, Journal of Environmental Management, vol. 110, pp. 27–32, (2012). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.