Open Access
Issue
MATEC Web Conf.
Volume 87, 2017
The 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”
Article Number 01007
Number of page(s) 8
Section Civil Engineering
DOI https://doi.org/10.1051/matecconf/20178701007
Published online 12 December 2016
  1. K. M. Li, M. K. Law, and M. P. Kwok, “Absorbent parallel noise barriers in urban environments,” J. Sound Vib., vol.315, no. 1–2, pp. 239–257,(2008). [CrossRef] [Google Scholar]
  2. H. B. Huang, R. X. Li, X. R. Huang, M. L. Yang, and W. P. Ding, “Sound quality evaluation of vehicle suspension shock absorber rattling noise based on the Wigner-Ville distribution,” Appl. Acoust., vol. 100, pp. 18–25, (2015). [CrossRef] [Google Scholar]
  3. Pultznerová. A, and Ižvolt. L, “Structural Modifications, Elements and Equipment For Railway Noise Reduction”, Procedia Engineering, (2014). [Google Scholar]
  4. I. Tsukernikov, I. Shubin, N. Ivanov, and T. Nevenchannaya, “Features of railway noise rationing and assessment in housing estate territory in Russia,” Procedia Eng., vol. 117, no. 1, pp. 362–367, (2015). [CrossRef] [Google Scholar]
  5. E. COmision and D. G. Energy, “Assessment Study on Rail Noise Abatement Measures,” Evaluation, pp. 1–129, (2007). [Google Scholar]
  6. M. Bruneau, “Fundamentals of Acoustics,” Fundam. Acoust., (2010). [Google Scholar]
  7. Hanidza, T. I. T., Jan, A. A. M., Abdullah, R., & Ariff, M., A Preliminary Study of Noise Exposure among Grass Cutting Workers in Malaysia. Social and Behavioral Sciences, (2013) [Google Scholar]
  8. N. Ozkurt, D. Sari, A. Akdag, M. Kutukoglu, and A. Gurarslan, “Modeling of noise pollution and estimated human exposure around Istanbul Atatürk Airport in Turkey,” Sci. Total Environ., vol. 482–483, no. 1, pp. 486–492, (2014). [CrossRef] [Google Scholar]
  9. M. S. Hammer, T. K. Swinburn, and R. L. Neitzel, “Environmental noise pollution in the United States : Developing an effective public health response,” Environ. Health Perspect., vol. 122, no. 2, pp. 115–119, (2014). [Google Scholar]
  10. Bistrup, Marie Louise et al. “Health Effects Of Noise On Children And Perception Of The Risk Of Noise” (2001). [Google Scholar]
  11. W. Babisch, B. Beule, M. Schust, N. Kersten, and H. Ising, “Traffic Noise and Risk of Myocardial Infarction,” Epidemiology, vol. 16, no. 1, pp. 33–40, (2005). [CrossRef] [Google Scholar]
  12. E. A. King, E. P. Bourdeau, X. Y. K. Zheng, and F. Pilla, “A combined assessment of air and noise pollution on the High Line, New York City,” Transp. Res. Part D, vol. 42, pp. 91–103, (2016). [CrossRef] [Google Scholar]
  13. N. M. Noor, H. Hamada, Y. Sagawa, and D. Yamamoto, “Effect of crumb rubber on concrete strength and chloride ion penetration resistance,” J. Teknol., vol. 77, no. 32, pp. 171–178, (2015). [Google Scholar]
  14. M. Gouveia, M. Borges, J. Costa, and A. V. Carneiro, “Burden of disease from hypercholesterolemia in Portugal.,” Rev. Port. Cardiol., vol. 23,no. 2, pp. 255–270, (2004). [Google Scholar]
  15. Popović Zdenka, Luka Lazarević, Ljiljana Brajovic, and Milica Vilotijević, “The Importance of Rail Inspections In The Urban Area -Aspect of Head Checking Rail Defects”, Procedia Engineering.(2015). [Google Scholar]
  16. Savale, Pa. “Effect of Noise Pollution On Human Being: Its Prevention and Control”, Journal of Environmental Research and Development (2014). [Google Scholar]
  17. S. A. Kudus, N. M. Bunnori, S. R. Basri, S. Shahidan, M. N. M. Jamil, and N. M. Noor, “An Overview Current Application of Artificial Neural Network in Concrete,” Adv. Mater. Res., vol. 626, pp. 372–375, (2012). [Google Scholar]
  18. S. Shahidan, N. M. Bunnori, N. Md Nor, and S. R. Basri, “Damage severity evaluation on reinforced concrete beam by means of acoustic emission signal and intensity analysis,” in 2011 IEEE Symposium on Industrial Electronics and Applications, pp. 337–341, (2011). [CrossRef] [Google Scholar]
  19. K. Mehraby, “Numerical and Analytical Investigation in Radiated Noise by a Shock-Absorber,” Int. J. Eng., vol. 26, no. 12 (C), pp. 1525–1534, (2012). [CrossRef] [Google Scholar]
  20. M. Attarchi, M. Mazloumi, S. K. Sadrnezhaad, A. Jafari, and M. Asadi, “Formation and rupture of carbonate film: an electrochemical noise approach,” Anti-Corros. Methods Mater., vol. 56, no. 2, pp. 103–109, (2009). [CrossRef] [Google Scholar]
  21. Maffei and Luigi, “Influence of The Design Of Railway Noise Barriers On Soundscape Perception” (2012). [Google Scholar]
  22. Clairbois Jean-Pierre and Massimo Garai. “The European Standards For Roads And Railways Noise Barriers : State of The Art 2015”(2015). [Google Scholar]
  23. B. K. and C. English, “Environmental Noise Barriers. A Guide to their Acoustic and Visual Design, second edition,” J. Sound Vib., vol. 329, no. 10, pp. 1982–1984, (2010). [CrossRef] [Google Scholar]
  24. E. P. D. EPD and H. D. HD, “Guidelines on Design of Noise Barriers,” no. January, p. 4,(2003). [Google Scholar]
  25. E. Van Haarenand P. H. Van Tol, “Validation of Ray Acoustics Applied for the Modelling of Noise Barriers,” J. Sound Vib., vol. 231, no. 3, pp. 681–688, (2000). [CrossRef] [Google Scholar]
  26. P. Guidorzi and M. Garai, “Advancements in Sound Reflection and Airborne Sound Insulation Measurement on Noise Barriers.” (2013). [Google Scholar]
  27. K. Jambrosic, “In-Situ Measurement of the Absorption Coefficient.” 1–8. [Google Scholar]
  28. C. Heed, “Sound Absorption and Acoustic Surface Impedance.” (1940). [Google Scholar]
  29. E. M. Samsudin, L. H. Ismail, and A. A. Kadir, “A Review on Physical Factors Influencing Absorption Performance of fibrous Sound Absorption Material From Natural Fibers,” vol. 11, no. 6, pp. 3703–3711, (2016). [Google Scholar]
  30. C. Wang and J. Torng, “Experimental study of the absorption characteristics of some porous fibrous materials,” Appl. Acoust., vol. 62, pp. 447–459, (2001). [CrossRef] [Google Scholar]
  31. R. P. Jaya, B. H. Abu Bakar, M. A. M. Johari, M. H. W. Ibrahim, M. R. Hainin, and D. S. Jayanti, “Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cycles,” Adv. Cem. Res., vol. 26, no. May, pp. 145–154, (2014). [CrossRef] [Google Scholar]
  32. S. R. Abdullah, W. R. Wan Zainal Abidin, and S. Shahidan, “Strength of Concrete Containing Rubber Particle As Partial Cement Replacement,” MATEC Web Conf., vol. 47, pp. 2–5, (2016). [CrossRef] [EDP Sciences] [Google Scholar]
  33. M. Abdul Rahim, N. M. Ibrahim, Z. Idris, Z. M. Ghazaly, S. Shahidan, N. L. Rahim, L. A. Sofri, and N. F. Isa, “Properties of Concrete with Different Percentange of the Rice Husk Ash (RHA) as Partial Cement Replacement,” Mater.Sci. Forum, vol. 803, pp. 288–293, (2014). [CrossRef] [Google Scholar]
  34. T. Morimoto, “Sound absorbing materials,” J. Acoust. Soc. Am., vol. 94, no. 5, p. 3037, (1993). [CrossRef] [Google Scholar]
  35. A. Amanda, J. B. Flóreza, and F. A. Moria, “Acoustic Characterization of Sugarcane Bagasse Particleboard Panels ( Saccharum officinarum L ),” vol. 18, no. 4, pp. 821–827, (2015). [Google Scholar]
  36. P. R. Tahir, A. M. A. Zaidi, N. Arsat, R. H. Mohamad Khairul Hadi Che Mohamad Khalib, and Z. F. Z. Abidin, “Potential Usage Of Agriculture Waste (Coconut Coir) For Sound Absorbing Material In Automotive Industry,”(1991). [Google Scholar]
  37. S. Ersoy and H. Küçük, “Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties,” Appl. Acoust., vol. 70, no. 1, pp. 215–220, (2009). [CrossRef] [Google Scholar]
  38. H. K. Kim and H. K. Lee, “Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete,” Appl. Acoust., vol. 71, no. 7, pp. 607–615, (2010). [CrossRef] [Google Scholar]
  39. N. Md Nor, N. Muhamad Bunnori, A. Ibrahim, S. Shahidan, and S. N. M. Saliah, “An investigation on acoustic wave velocity of reinforced concrete beam in-plane source,” in Proceedings -2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, CSPA 2011, pp. 19–22 (2011). [CrossRef] [Google Scholar]
  40. Koizumi, T., N. Tsujiuchi and A Adachi, “The Development of Sound Absorbing Materials Using Natural Bamboo Fibers, High Performance” WIT Press (2002). [Google Scholar]
  41. A. Putra, Y. Abdullah, H. Efendy, W. M. Farid, M. R. Ayob, and M. S. Py, “Utilizing sugarcane wasted fibers as a sustainable acoustic absorber,” Procedia Eng., vol. 53, pp. 632–638, (2013). [CrossRef] [Google Scholar]
  42. Stein, B. and Reynolds, J. S. Mechanical and Electrical Equipment for Building. New York: John Wiley and Sons (2000). [Google Scholar]
  43. E. Setyowati and G. Hardiman, “The Acoustical Performances of Oyster Shell Waste Based Green Concrete Materials,” J. Eng. Technol., vol. 3, no. 3, (2015). [Google Scholar]
  44. AL-Rahman, L.A. et al. Acoustic properties of innovative material from date palm fibre. American Journal of Applied Sciences, 9(9), pp. 1390–1395, (2012). [CrossRef] [Google Scholar]
  45. H. K. Kim and H. K. Lee, “Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio,” J. Sound Vib., vol. 329, no. 7, pp. 866–879, (2010). [CrossRef] [Google Scholar]
  46. A. Putra, Y. Abdullah, H. Efendy, W. M. F. W. Mohamad, and N. L. Salleh, “Biomass from paddy waste fibers as sustainable acoustic material,”Adv. Acoust. Vib., (2013). [Google Scholar]
  47. L. Peng, B. Song, J. Wang, and D. Wang, “Mechanic and acoustic properties of the sound-absorbing material made from natural fiber and polyester,” Adv. Mater. Sci. Eng., (2015). [Google Scholar]
  48. S. Shahidan, R. Pullin, K. M. Holford, M. B. N, and N. Nor, “Quantitative Evaluation of the Relationship between Tensile Crack and Shear Movement in Concrete beams,” Adv. Mater. Res., vol. 626, pp. 355–359, (2013). [CrossRef] [Google Scholar]
  49. S. Shahidan, H. B. Koh, A. M. S. Alansi, and L. Y. Loon, “Strength Development and Water Permeability of Engineered Biomass Aggregate Pervious Concrete,” MATEC Web Conf., vol. 47, pp. 2–7, (2016). [CrossRef] [EDP Sciences] [Google Scholar]
  50. Wassilieff, C. Sound absorption of wood-based materials. Applied Acoustics, 48(4), pp. 339–356, (1996). [CrossRef] [Google Scholar]
  51. Z. Hong, L. Bo, H. Guangsu, and H. Jia, “A novel composite sound absorber with recycled rubber particles,” J. Sound Vib., vol. 304, no. 1–2, pp. 400–406, (2007). [CrossRef] [Google Scholar]
  52. S. Mahzan, a M. A. Zaidi, N. Arsat, M. N. M. Hatta, M. I. Ghazali, and S. R. Mohideen, “Study on Sound Absorption Properties of Coconut Coir Fibre Reinforced Composite with Added Recycled Rubber,” Integr. Eng., no. Mechanical, Materials and Manufacturing, pp. 1–6, (2009). [Google Scholar]
  53. H. S. Seddeq, “Factors Influencing Acoustic Performance of Sound Absorptive Materials,” vol. 3, no. 4, pp. 4610–4617, (2009). [Google Scholar]
  54. DuPont, “Acoustic : Different kinds of materials for traffic noise barriers,” Urban Acoust., (2009). [Google Scholar]
  55. N. Cooperative, “Guidelines for Selection and Approval of Noise Barrier Products Final Report,” no. July, (2008). [Google Scholar]
  56. J. Clairbois, foort de Roo, M. Garai, M. Conter, J. Defrance, crina A. Oltean, and C. Durso, “Guidebook to Noise Reducing Devices optimisation,” no. December 2012, pp. 1–56, (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.