Open Access
Issue
MATEC Web Conf.
Volume 87, 2017
The 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”
Article Number 01005
Number of page(s) 6
Section Civil Engineering
DOI https://doi.org/10.1051/matecconf/20178701005
Published online 12 December 2016
  1. M. A. Mir, P. T. Ghazvinei, N. M. N. Sulaiman, N. E. A. Basri, S. Saheri, N. Z. Mahmood, A. Jahan, R. A. Begum, and N. Aghamohammadi, “Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model,” J. Environ. Manage, vol. 166, pp. 109–115, (2016). [CrossRef] [Google Scholar]
  2. M. Abdul Rahim, N. M. Ibrahim, Z. Idris, Z. M. Ghazaly, S. Shahidan, N. L. Rahim, L. A. Sofri, and N. F. Isa, “Properties of Concrete with Different Percentange of the Rice Husk Ash (RHA) as Partial Cement Replacement,” Mater. Sci. Forum, vol. 803, pp. 288–293, (2014). [CrossRef] [Google Scholar]
  3. M. Osman, M. Nasir, and M. A. Mujeebu, “Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia,” Waste Manag., vol. 29, no. 7, pp. 2209–2213, (2009). [CrossRef] [Google Scholar]
  4. S. Shahidan, R. Pullin, K. M. Holford, M. B. N, and N. Nor, “Quantitative Evaluation of the Relationship between Tensile Crack and Shear Movement in Concrete beams,” Adv. Mater. Res., vol. 626, pp. 355–359, (2013). [CrossRef] [Google Scholar]
  5. Y. Zhao, C. Xu, C. Xing, X. Shi, L. M. Matuana, H. Zhou, and X. Ma, “Fabrication and characteristics of cellulose nanofibril films from coconut palm petiole prepared by different mechanical processing,” Ind. Crops Prod., vol. 65, pp. 96–101, (2015). [CrossRef] [Google Scholar]
  6. A. Rashad, “Cementitious materials and agricultural wastes as natural fi ne aggregate replacement in conventional mortar and concrete,” J. Build. Eng., vol. 5, pp. 119–141, (2016) [CrossRef] [Google Scholar]
  7. S. A. Kudus, N. M. Bunnori, S. R. Basri, S. Shahidan, M. N. M. Jamil, and N. M. Noor, “An Overview Current Application of Artificial Neural Network in Concrete,” Adv. Mater. Res., vol. 626, pp. 372–375, 2012. [CrossRef] [Google Scholar]
  8. D. Verma and P. C. Gope, The use of coir/coconut fibers as reinforcements in composites. (2015). [Google Scholar]
  9. R. Kardooni, S. Binti, and F. Binti, “Renewable energy technology acceptance in Peninsular Malaysia,” Energy Policy, vol. 88, pp. 1–10, (2016). [CrossRef] [Google Scholar]
  10. H. B. Awbi, “Calculation of convective heat transfer coefficients of room surfaces for natural convection,” Energy Build., vol. 28, no. 2, pp. 219–227, (1998). [CrossRef] [Google Scholar]
  11. a. G. Muoz, S. B. Saidman, and J. B. Bessone, “The adaptive simulation of convective heat transfer at internal building surfaces,” Build. Environ, vol. 37, no. 8–9, pp. 791–806, (2002). [CrossRef] [Google Scholar]
  12. S. Shahidan, N. M. Bunnori, N. Md Nor, and S. R. Basri, “Damage severity evaluation on reinforced concrete beam by means of acoustic emission signal and intensity analysis,” in 2011 IEEE Symposium on Industrial Electronics and Applications, (2011), pp. 337–341. [CrossRef] [Google Scholar]
  13. K. Gunasekaran, R. Annadurai, and P. S. Kumar, “Long term study on compressive and bond strength of coconut shell aggregate concrete,” Constr. Build. Mater, vol. 28, no. 1, pp. 208–215, (2012). [CrossRef] [Google Scholar]
  14. D. Y. Osei, C. Engineering, and C. Coast, “Experimental assessment on coconut shells as aggregate in concrete,” vol. 2, no. 5, pp. 7–11, (2013). [Google Scholar]
  15. P. S. Kambli and S. R. Mathapati, “Application of Coconut Shell as Coarse Aggregate in Concrete : A Technical Review,” vol. 4, no. 3, pp. 498–501, (2014). [Google Scholar]
  16. K. Gunasekaran, “Study on reinforced lightweight coconut shell concrete beam behavior under shear,” Mater. Des., vol. 50, pp. 293–301, Sep. (2013). [CrossRef] [Google Scholar]
  17. A. Yerramala, “Properties of Concrete with Coconut Shells as Aggregate Replacement,” vol. 1, no. 6, pp. 21–31, (2012). [Google Scholar]
  18. M. M. Rahman and K. Kadirgama, “Investigate the Combination of Coconut Shell and Grained,” Test, no. October, pp. 49–58, (2009). [Google Scholar]
  19. S. P. G. Akshay S. Shelke, Kalyani R. Ninghot, Pooja P. Kunjekar, “Coconut Shell as Partial Replacement of Coarse Aggregate in Concrete,” vol. 5, no. 3, pp. 211–214, (2014). [Google Scholar]
  20. M. Kaur and M. Kaur, “A review on utilization of coconut shell as coarse aggregates in mass concrete,” Int. J. Appl. Eng. Res., vol. 7, no. 11 SUPPL., pp. 2063–2065, (2012). [Google Scholar]
  21. I. Ahmed and N. Munigal, “Study on Strength Characteristics of Concrete with Partial Replacement of Cement with Flyash and Coarse Aggregate with Coconut Shell,” vol. 1, no. 12, pp. 417–425, (2015). [Google Scholar]
  22. P. Shafigh, H. Bin Mahmud, M. Z. Jumaat, and M. Zargar, “Agricultural wastes as aggregate in concrete mixtures - A review,” Constr. Build. Mater., vol. 53, pp. 110–117, (2014). [CrossRef] [Google Scholar]
  23. T. U. Ganiron, “Sustainable management of waste coconut shells as aggregates in concrete mixture,” J. Eng. Sci. Technol. Rev., vol. 6, no. 5, pp. 7–14, (2013). [Google Scholar]
  24. K. Gunasekaran, P. S. Kumar, and M. Lakshmipathy, “Mechanical and bond properties of coconut shell concrete,” Constr. Build. Mater., vol. 25, no. 1, pp. 92–98, (2011). [CrossRef] [Google Scholar]
  25. N. Kumar, “Strength Properties of Coconut Shell as Coarse Aggregate In Concrete,” (2012). [Google Scholar]
  26. E. A. Olanipekun, K. O. Olusola, and O. Ata, “A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates,” Build. Environ., vol. 41, no. 3, pp. 297–301, (2006). [CrossRef] [Google Scholar]
  27. B. Rajeevan and K. M. Shamjith, “A Study on the Utilization of Coconut Shell as Coarse Aggregate in Concrete,” Int. J. Eng. Res. Technol., vol. 4, no. 07, pp. 77–80, (2015). [Google Scholar]
  28. D. Ahlawat and L. G. Kalurkar, “Coconut Shell as Partial Replacement of Coarse Aggregate in Concrete,” IOSR J. Mech. Civ. Eng., vol. 2014, pp. 61–64, (2014). [Google Scholar]
  29. A. Jaya Prithika and S. K. Sekar, “Mechanical and fracture characteristics of Eco-friendly concrete produced using coconut shell, ground granulated blast furnace slag and manufactured sand,” Constr. Build. Mater., vol. 103, pp. 1–7, (2016). [CrossRef] [Google Scholar]
  30. A. R and G. K, “Study On Flexural Behavior of Steel-Coconut Shell Concrete - Steel Sandwich Beam using Quarry Dust,” vol. 1, no. 11, pp. 433–439, (2015). [Google Scholar]
  31. D. Shraddha, F. Hitali, D. Pradeep, and S. Varpe, “Sustainable Concrete by Partially Replacing Coarse Aggregate Using Coconut Shell,” J. Today’s Ideas - Tomorrow’s Technol., vol. 2, no. 1, pp. 41–54, (2014). [CrossRef] [Google Scholar]
  32. S. kumar B. G. Vishwas P. Kukarni, “Comparative Study on Coconut Shell Aggregate with Conventional Concrete,” Int. J. Eng. Innov. Technol., vol. 2, no. 12, pp. 67–70, (2013). [Google Scholar]
  33. Anju Mary Ealias, Rajeena A P, Sivadutt S, Asst. Prof. Life John, and and Asst. Prof. Anju Paul,“Improvement of Strength of Concrete with Partial Replacement Of Course Aggregate With Coconut Shell and Coir Fibres,” IOSR J. Mech. Civ. Eng., vol. 11, no. 3, pp. 16–24, (2014). [CrossRef] [Google Scholar]
  34. S. A. Kakade and A. W. Dhawale, “Light Weight Aggregate Concrete By Using Coconut Shell,” Int. J. Tech. Res. Appl., vol. 3, no. 3, pp. 127–129, (2015). [Google Scholar]
  35. A. S. Shaikh, S. B. Thorat, R. V Unde, P. S. Shirse, A. S. Shaikh, C. Engineering, and A. Polytechnic, “Advance Concrete-Aggregate replaced by Coconut Shell,” (2015). [Google Scholar]
  36. S. Shahidan, S. Salwa, M. Zuki, C. K. Keong, and J. Jayaprakash, “Repaired of Fire-Damaged Concrete- Filled Double Skin Steel Tubular (CFDST) Columns With Fiber Reinforced Polymer (FRP),” ARPN J. Eng. Appl. Sci., vol. 11, no. 6, pp. 3718–3725, (2016). [Google Scholar]
  37. S. Muthusamy and P. Kolandasamy, “Samozbijajui lagani beton na visokim temperaturama,” Gradjevinar, vol. 67, no. 4, pp. 329–338, (2015). [Google Scholar]
  38. K. O.M, O. E.C, and S. O.J, “1St International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics,” Exp. Therm. Fluid Sci., vol. 23, no. 3–4, pp. I–V, (2000). [CrossRef] [Google Scholar]
  39. N. Md Nor, N. Muhamad Bunnori, A. Ibrahim, S. Shahidan, and S. N. M. Saliah, “An investigation on acoustic wave velocity of reinforced concrete beam in-plane source,” in Proceedings - 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, CSPA 2011, 2011, pp. 19–22 [CrossRef] [Google Scholar]
  40. S. Shahidan, H. B. Koh, A. M. S. Alansi, and L. Y. Loon, “Strength Development and Water Permeability of Engineered Biomass Aggregate pervious Concrete,” vol. 7, pp. 2–7. [Google Scholar]
  41. S. Shahidan, I. Isham, and N. Jamaluddin, “A Review on Waste Minimization by Adopting in Self Compacting Concrete,” MATEC Web Conf., vol. 47, pp. 1–7, (2016). [CrossRef] [EDP Sciences] [Google Scholar]
  42. N. Salleh, A. R. Mohd Sam, and J. Mohd Yatim, “Flexural Behavior of GFRP RC Beam Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plate: Cracking Behavior,” Appl. Mech. Mater., vol. 752–753, pp. 610–616, 2015. [CrossRef] [Google Scholar]
  43. M. H. Wan Ibrahim, N. Jamaludin, J. M. Irwan, P. J. Ramadhansyah, and a. Suraya Hani, “Compressive and Flexural Strength of Foamed Concrete Containing Polyolefin Fibers,” Adv. Mater. Res., vol. 911, no. October, pp. 489–493, 2014. [CrossRef] [Google Scholar]
  44. R. P. Jaya, B. H. Abu Bakar, M. A. M. Johari, M. H. W. Ibrahim, M. R. Hainin, and D. S. Jayanti, “Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cycles,” Adv. Cem. Res., vol. 26, no. MAY, pp. 145–154, 2014. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.