Open Access
MATEC Web Conf.
Volume 76, 2016
20th International Conference on Circuits, Systems, Communications and Computers (CSCC 2016)
Article Number 02045
Number of page(s) 5
Section Systems
Published online 21 October 2016
  1. D. Norrgran, T. Shuttleworth, G. Rasmussen. Updated magnetic separation techniques to improve grinding circuit efficiency, Minerals Engineering, 17 (2004). [CrossRef] [Google Scholar]
  2. P. Todd, R.P. Cooper, J.F. Dooyle, S. Dunn, J. Vellinger, M.S. Deuser, Multistage magnetic particle separator, Journal of Magnetism and Magnetic Materials, 225 (2001). [CrossRef] [Google Scholar]
  3. V. Zezulka, P. Straka, P. Mucha. A magnetic filter with permanent magnets on the basis of rare earth, Journal of Magnetism and Magnetic Materials, 268 (2004). [CrossRef] [Google Scholar]
  4. D. Norrgran. Magnetic filtration: producing fine high-purity feedstocks, Filtration and Separation, 45 (6), (2008). [Google Scholar]
  5. J.M.D. Coey. Permanent magnet applications, Journal of Magnetism and Magnetic Materials, 248 (2002). [Google Scholar]
  6. S. Nedelcu, J.H. Watson. Magnetic separator with transversally magnetized disk permanent magnets, Mineral Engineering, 15 (2002). [CrossRef] [Google Scholar]
  7. S. Sharma, A. Gaur, U. Singh, V. K. Katiyar. Modeling and Simulation of Magnetic Nanoparticles Transport in a Channel for Magnetic Drug Targeting, Proceedings of the 12th International Conference on Heat Transfer, Thermal Engineering and Environment (HTE ‘14). [Google Scholar]
  8. О. Hidehiko, М. Kazunari, O. Takeshi, R. Evan, W. Hiroshi. Computational Fluid Dynamics Simulation of High Gradient Magnetic Separation, Separation Science and Technology, 40 (2005). [Google Scholar]
  9. J.G. Rayner, T.J. Napier-Munn. А mathematical model of concentrate solids content for the wet drum magnetic separator, International Journal of Mineral Processing, 70 (2003). [CrossRef] [Google Scholar]
  10. J. Svoboda. A realistic description of the process of high-gradient magnetic separation, Minerals Engineering, 14 (2001). [CrossRef] [Google Scholar]
  11. V. Murariu, J. Svoboda, P. Sergeant. The modeling of the separation process in a ferrohydrostatic separator, Minerals Engineering, 18 (2005). [CrossRef] [Google Scholar]
  12. K. Nandy, S. Chaudhuri, R. Ganguly, I.K. Puri. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices, Journal of Magnetism and Magnetic Materials, 320 (2008). [CrossRef] [Google Scholar]
  13. R. Goleman. Macroscopic model of particles’ capture by the elliptic cross-section collector in magnetic separator, Journal of Magnetism and Magnetic Materials, 272-276, (2004). [CrossRef] [Google Scholar]
  14. Patent 4492921 US. Method of Determining the Quantity of Solid Fraction of Ferromagnetic Matter in a Fluid. A.V. Sandulyak, V.I. Garaschenko, O.J. Korkhov Published 1985. [Google Scholar]
  15. A.A. Sandulyak, D.A. Sandulyak, A.E. Ablaeva, A.V. Sandulyak. A Phenomenological Model of Experimental and Computational Magnetic Control of Ferrous Impurities in Foodstuffs, Proceedings of the 4th International Conference on Agricultural Science, Biotechnology, Food and Animal Science (Dubai, ABIFA15). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.