Open Access
Issue
MATEC Web Conf.
Volume 68, 2016
2016 The 3rd International Conference on Industrial Engineering and Applications (ICIEA 2016)
Article Number 16003
Number of page(s) 4
Section Applied Mathematics
DOI https://doi.org/10.1051/matecconf/20166816003
Published online 01 August 2016
  1. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions. Dover Publ., New York, (1964)
  2. R. Aktaş, A note on parameter derivatives of the Jacobi polynomials on the triangle, Appl. Math. and Comp., 247 (2014), 368–372. [CrossRef]
  3. R. Aktaş, On parameter derivatives of a family of polynomials in two variables, Appl. Math. and Comp., 256 (2015), 769–777. [CrossRef]
  4. R. Aktaş, Representations for parameter derivatives of some Koornwinder polynomials in two variables, Journal of the Egyptian Mathematical Society, In Press.
  5. C. F. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications 81. Cambridge: Cambridge University Press, (2001) [CrossRef]
  6. J. Froehlich, Parameter derivatives of the Jacoby polynomials and the gaussian hypergeometric function, Integral Transforms Spec. Funct., 2(4) (1994), 253–266. [CrossRef]
  7. W. Koepf, Identities for families of orthogonal polynomials and special functions, Integral Transforms Spec. Funct., 5(1–2) (1997), 69–102. [CrossRef]
  8. W. Koepf, D. Schmersau, Representations of orthogonal polynomials, J. Comput. Appl. Math., 90 (1998), 57–94. [CrossRef]
  9. S. Lewanowicz, Representations for the parameter derivatives of the classical orthogonal polynomials, Rend. Circ. Mat. Palermo, Ser. II, Suppl. 68 (2002), 599–613.
  10. E.D. Rainville, Special Functions,The Macmillan Co., New York, (1960)
  11. A. Ronveaux, A. Zarzo, I. Area, E. Godoy, Classical orthogonal polynomials: dependence on parameters,J.Comput. Appl. Math., 121 (2000), 95–112. [CrossRef]
  12. R. Szmytkowski, A note on parameter derivatives of classical orthogonal polynomials, arXiv:0901.2639v3.
  13. R. Szmytkowski, On the derivative of the Legendre function of the first kind with respect to its degree, J. Phys. A, 39 (2006), 15147–15172 [CrossRef]
  14. [corrigendum: J. Phys. A, 40 (2007), 7819–7820]. [CrossRef]
  15. R. Szmytkowski, Addendum to ‘On the derivative of the Legendre function of the first kind with respect to its degree’, J. Phys. A, 40 (2007), 14887–14891. [CrossRef]
  16. Szmytkowski, On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), J. Math. Chem., 46 (2009), 231–260. [CrossRef]
  17. Szmytkowski, On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), J. Math. Chem., 49 (2011), 1436–1477. [CrossRef]
  18. M. Wulkow, Numerical treatment of countable systems of ordinary differential equations, Konrad-Zuse-Zentrum Berlin, Techn. Rep. TR 90–8, (1990)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.