Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06019
Number of page(s) 8
Section Chapter 6 Materials Science
DOI https://doi.org/10.1051/matecconf/20166706019
Published online 29 July 2016
  1. Lu L, Shen X F, Chen X H, et al. Ultrahigh Strength and High Electrical Conductivity in Copper [J].Science, 2004, 304:422–426. [CrossRef] [PubMed] [Google Scholar]
  2. Ivanov A D, Nikolaev A K, Kalinin G M. Effect of Heat Treatments on the Properties of Cu-Cr-Zr Alloys [J]. J. Nucl. Mater., 2002, 307-311(1): 673. [CrossRef] [Google Scholar]
  3. Wang Z J, Zhong Y B, Cao G H, Wang C, Wang J, Ren W L, Lei Z S, Ren Z M. Influence of DC Electric Current on the Hardness of Thermally Aged Cu-Cr-Zr alloy[J]. Journal of Alloys and Compounds, 2009, 479: 303. [CrossRef] [Google Scholar]
  4. Batra I S, Dey G K, Kulkarni U D, Banerjee S. Precipitation in a Cu-Cr-Zr Alloy [J]. Mater. Sci. Eng. A, 2003, 356(1–2) : 32. [CrossRef] [Google Scholar]
  5. Tu J P, Qi W X, Yang Y Z, Liu F, Zhang J T, Gan G Y, Wang N Y, Zhang X B, Liu MS. Effect of Aging Treatment on the Electrical Sliding Wear Behavior of Cu-Cr-Zr Alloy [J]. Wear, 2002, 249: 1021−1027. [Google Scholar]
  6. Davis J W, Kalinin G M. Material Properties and Design Requirements for Copper Alloys Used in ITER [J]. Journal of Nuclear Materials, 1998, 258/263: 323−328. [CrossRef] [Google Scholar]
  7. Luo P, Dong S, Xie Z, et al. The effects of coating parameters on the quality of TiB2–TiC composite phase coating on the surface of Cu–Cr–Zr alloy electrode [J]. Surface and Coatings Technology, 2014, 253:132–138. [CrossRef] [Google Scholar]
  8. Akhtar F, Askari S J, Shah K A, et al. Microstructure, Mechanical Properties, Electrical Conductivity and Wear Behavior of High Volume TiC Reinforced Cu-Matrix Composites [J]. Materials Characterization, 2009, 60(4): 327–336. [CrossRef] [Google Scholar]
  9. Fu H, Zhang H, Wang H, et al. Synthesis and Mechanical Properties of Cu-Based Bulk Metallic Glass Composites Containing In-situ TiC Particles [J]. Scripta Materialia, 2005, 52(7): 669–673. [CrossRef] [Google Scholar]
  10. Guo M X, Wang M P, Shen K, et al. Synthesis of Nano TiB2 Particles in Copper Matrix by In Situ Reaction of Double-beam Melts [J]. Journal Of Alloys And Compounds, 2008, 460(1-2): 585–589. [CrossRef] [Google Scholar]
  11. Lu J, Shu S, Qiu F, et al. Compression Properties and Abrasive Wear Behavior of High Volume Fraction TiCx–TiB2/Cu Composites Fabricated by Combustion Synthesis and Hot Press Consolidation [J]. Materials & Design, 2012, 40:157–162. [CrossRef] [Google Scholar]
  12. Li M Q, Zhai H X, Huang Z Y, et al. Microstructure and Mechanical Properties of TiC0.5 Reinforced Copper Matrix Composites [J]. Mat Sci Eng a-Struct, 2013, 588:335–339. [CrossRef] [Google Scholar]
  13. Jin S B, Shen P, Zou B L, et al. Morphology Evolution of TiCx Grains During SHS in an Al-Ti-C System [J]. Cryst Growth Des, 2009, 9(2): 646–649. [CrossRef] [Google Scholar]
  14. Kaftelen H, Ünl N, Gller G, et al. Comparative Processing-Structure–Property Studies of Al–Cu Matrix Composites Reinforced with TiC Particulates [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(7): 812–824. [CrossRef] [Google Scholar]
  15. Liang Y, Han Z, Li X, et al. Study on the Reaction Mechanism of Self-propagating High-temperature Synthesis of TiC in the Cu–Ti–C System [J]. Materials Chemistry and Physics, 2012, 137(1): 200–206. [CrossRef] [Google Scholar]
  16. S.B. Sinnotta, E.C. Dickey. Ceramic/metal Interface Structures and their Relationship to Atomic and Meso-scale Properties. Materials Science and Engineering R, 2003; 43: 1–59. [CrossRef] [Google Scholar]
  17. W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori. HREM Study of TiB/Ti Interfaces in a TiB-TiC In Situ Composite. Scripta Materialia, 2001; 44: 1069–1075. [CrossRef] [Google Scholar]
  18. Zarrinfar N, Kennedy A R, Shipway P H. Reaction Synthesis of Cu–TiCx Master-alloys for the Production of Copper-based Composites [J]. Scripta Materialia, 2004, 50(7): 949–952. [CrossRef] [Google Scholar]
  19. Rathod S, Modi O P, Prasad B K, et al. Cast In Situ Cu–TiC Composites: Synthesis by SHS Route and Characterization [J]. Materials Science and Engineering: A, 2009, 502(1–2): 91–98. [CrossRef] [Google Scholar]
  20. Zhou D S, Tang J, Qiu F, et al. Effects of Nano-TiCp on the Microstructures and Tensile Properties of TiCp/Al–Cu Composites [J]. Materials Characterization, 2014, 94:80–85. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.