Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06012
Number of page(s) 8
Section Chapter 6 Materials Science
DOI https://doi.org/10.1051/matecconf/20166706012
Published online 29 July 2016
  1. Konyashin I, Hlawatschek S, Ries B, Lachmann F, Sologubenko A, Weirich T. A new approach to fabrication of gradient WC-Co hardmetals. Int J Refract Met Hard Mater., 28(2010): 228–37 [CrossRef]
  2. Konyashin I, Ries B, Lachmann F., Fry AT. Gradient WC-Cohardmetals: Theory and practice. Int J Refract Met Hard Mater., 36(2013):10–21 [CrossRef]
  3. Fang ZZ, Fan P, Guo J. Functionally graded cemented tungsten carbide with engineered hard surface and the method for making the same. U.S. Patent, US20110116963
  4. Fischer U, Hartzell E, Akerman J. Cemented carbide body used preferably for rock drilling and mineral cutting. US patent no. 4743515; 1988.
  5. Fischer U, Waldenstrom M, Hartzell T. Cemented carbide body with increased wear resistance. US patent no. 5856626 (1999)
  6. Fan P, Fang ZZ, Guo J. A review of liquid phase migration and methods for fabrication of functionally graded cemented tungsten carbide. Int J Refract Met Hard Mater., 36(2013): 2–9 [CrossRef]
  7. Guo J, Fan P, Wang X, Fang ZZ. A novel approach for manufacturing functionally graded cemented tungsten carbide. Int J Powder Metall., 47(2011): 55–62.
  8. Wang X, Hwang KS, Koopman M, Fang ZZ, Zhang LH. Mechanical properties and wear resistance of functionally graded WC-Co. Int J Refract Met Hard Mater., 36(2013):46–51 [CrossRef]
  9. Guo J, Fang ZZ, Fan P, Wang X. Kinetics of the formation of metal binder gradient in WC-Co by carbon diffusion induced liquid migration. Acta Mater., 59(2011): 4719–31 [CrossRef]
  10. Yuan YG, Ding JJ, Wang YK, Wang Q, Sun WQ, Bai JS. Optimization of process parameters for fabricating functionally gradient WC-Co composites. Int J Refract Met Hard Mater., 43(2014):109–14 [CrossRef]
  11. Yuan YG, Ding JJ, Wang YK, Sun WQ. Fabrication of functionally gradient ultrafine-grained WC-Co composites. Appl Mech Mater., 423–426(2013): 885–9. [CrossRef]
  12. Love A, Luyckx S, Sacks N. Quantitative relationships between magnetic properties, microstructure and composition of WC-Co alloys. J Alloys Compd., 489(2010): 465–68 [CrossRef]
  13. Mahale AE. Phase diagrams for ceramists, X. American Ceramic Society; 1994.
  14. Fan P, Guo J, Fang ZZ, Prichard P. Design of cobalt gradient via controlling carbon content and WC grain size in liquid-phase-sintered WC-Co composite. Int J Refract Met Hard Mater., 27(2009):256–60. [CrossRef]
  15. Fan P, Guo J, Fang ZZ, Prichard P. Effects of liquid-phase composition on its migration during liquid-phase sintering of cemented carbide. Metall Mater Trans A. 40A (2009):1995–2006. [CrossRef]
  16. Fan P, Eso O, Fang ZZ, Sohn HY. Effect of WC particle size on Co distribution in liquid-phase-sintered functionally graded WC-Co composite. Int J Refract Met Hard Mater., 26(2008):98–105. [CrossRef]
  17. Liu SR. Microstructure parameters of WC-Co cemented carbide. T Mater Heat Treat., 26(2005):62–64
  18. Liu Y, Wang HB, Long ZY, Liaw PK, Yang JG, Huang BY. Microstructural evolution and mechanical behaviors of graded cemented carbides. Mater Sci Eng A., 426(2006): 346–54 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.