Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 04021
Number of page(s) 8
Section Chapter 4 Surface Engineering and Coating Technology
Published online 29 July 2016
  1. M. Goldoni, A. Caglieri, D. Poli, M. V. Vettori, M. Corradi, P. Apostoli, A. Mutti, Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers, Anal. Chim. Acta, 562 (2006) 229–235 [CrossRef] [Google Scholar]
  2. S. Podgoric, B.J. Jones, R. Bulpett, G. Troisi, J. Franks, Diamond-like carbon/epoxy low-friction coatings to replace electroplated chromium, Wear, 267 (2009) 996–1001. [CrossRef] [Google Scholar]
  3. T. Sahraoui, N. Fenineche, G. Montavon, C. Coddet, Alternative to chromium: characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty), J. Mater. Process. Technol., 152 (2004), 43–55. [CrossRef] [Google Scholar]
  4. Y.B Song, D.-T Chin, Current efficiency and polarization behavior of trivalent chromium electrodeposition process, Electrochim. Acta, 48 (2002) 349–356. [CrossRef] [Google Scholar]
  5. S.C. Kwon, M. Kim, S.U. Park, D.Y. Kim, D. Kim, K.S. Nam, Y. Choi, Characterization of intermediate Cr-C layer fabricated by electrodeposition in hexavalent and trivalent chromium baths, Surf. Coat. Technol., 183 (2004) 151–156. [CrossRef] [Google Scholar]
  6. C.W. Chien, C.L. Liu, F.J. Chen, K.H. Lin, C.S. Lin, Microstructure and properties of carbon–sulfur-containing chromium deposits electroplated in trivalent chromium baths with thiosalicylic acid, Electrochim. Acta, 72 (2012) 74–80. [CrossRef] [Google Scholar]
  7. C.A. Huang, Y.W. Liu, C. Yu, C.C. Yang, Role of carbon in the chromium deposit electroplated from a trivalent chromium-based bath, Surf. Cot. Technol., 205 (2011) 3461–3466. [CrossRef] [Google Scholar]
  8. C.A. Huang, Y.W. Liu, C.H. Chuang, The hardening mechanism of a chromium–carbon deposit electroplated from a trivalent chromium-based bath, Thin solid films, 517 (2009) 4902–4904. [CrossRef] [Google Scholar]
  9. W.X Chen, J.P Tu, H.Y Gan, Z.D Xu, Q.G Wang, J.Y Lee, Z.L Liu, X.B Zhang, Electroless preparation and tribological properties of Ni-P-Carbon nanotube composite coatings under lubricated condition, Surf. Cot. Technol., 160 (2002) 68–73. [CrossRef] [Google Scholar]
  10. I. Lyo, H. Ahn, D. Lim, Microstructure and tribological properties of plasma-sprayed chromium oxide–molybdenum oxide composite coatings, Surf. Cot. Technol., 163–164 (2003) 413–421. [CrossRef] [Google Scholar]
  11. T. Borkar, S. P. Harimkar, Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings, Surf. Cot. Technol., 205 (2011) 4124–4134. [CrossRef] [Google Scholar]
  12. L. Du, B. Xu, S. Dong, H. Yang, Y. Wu, Preparation, microstructure and tribological properties of nano-Al2O3/Ni brush plated composite coatings, Surf. Cot. Technol., 192 (2005) 311–316. [CrossRef] [Google Scholar]
  13. C.A. Huang, U.W. Liu, C.H. Chuang, Role of nickel undercoat and reduction-flame heating on the mechanical properties of Cr–C deposit electroplated from a trivalent chromium based bath, Surf. Cot. Technol., 203 (2009) 2921–2926. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.